
Through the Coding-Lens

Community Detection and Beyond

Christopher Blöcker

Department of Physics
Umeå 2022

copyright © 2022 christopher blöcker

This work is protected by the Swedish Copyright Legislation (Act 1960:729)

Dissertation for PhD

isbn: 978-91-7855-827-8 (print)
isbn: 978-91-7855-828-5 (pdf)

Cover design by Anja Sundberg, Inhousebyrån, Umeå University
Electronic version available at: http://umu.diva-portal.org/
Printed by: Cityprint i Norr AB
Umeå, Sweden, 2022

Contents

Abstract i

List of Papers vii

Preface ix

Introduction 1

PA R T I B A C K G R O U N D

Network Science 5

The Map Equation 13

Open Questions 23

PA R T I I C O M M U N I T Y D E T E C T I O N A N D B E Y O N D

Bipartite Networks 29

Incomplete Data 41

Community-Aware Centrality 55

Community-Based Link Prediction 69

PA R T I I I C O N C L U S I O N

Summary 83

Author Contributions 89

Acknowledgements 91

Bibliography 93

To my father who would have enjoyed reading this.

Abstract

We live in a highly-connected world and find networks wherever
we look: social networks, public transport networks, telecom-
munication networks, financial networks, and more. These net-
works can be immensely complex, comprising potentially mil-
lions or even billions of inter-connected objects. Answering ques-
tions such as how to control disease spreading in contact net-
works, how to optimise public transport networks, or how to
diversify investment portfolios requires understanding each net-
work’s function and working principles.

Network scientists analyse the structure of networks in search
of communities: groups of objects that form clusters and are
more connected to each other than the rest. Communities form
the building blocks of networks, corresponding to their sub-
systems, and allow us to represent networks with coarse-grained
models. Analysing communities and their interactions helps us
unravel how networks function.

In this thesis, we use the so-called map equation framework,
an information-theoretic community-detection approach. The
map equation follows the minimum description length princi-
ple and assumes complete data in networks with one node type.
We challenge these assumptions and adapt the map equation
for community detection in networks with two node types and
incomplete networks where some data is missing. We move
beyond detecting communities and derive approaches for how,
based on communities, we can identify influential objects in net-
works, and predict links that do not (yet) exist.

ii

Sammanfattning

Vi lever i en värld som blir mer och mer sammanlänkad. Vart vi
än tittar hittar vi nätverk: sociala nätverk, kollektivtrafiknätverk,
telekommunikationsnätverk, finansiella nätverk och så vidare.
Dessa nätverk kan vara oerhört komplexa och omfatta poten-
tiellt miljoner eller till och med miljarder sammankopplade ob-
jekt. För att kunna besvara frågor som: hur kontrollerar vi sjuk-
domsspridning i kontaktnät, hur optimerar vi kollektivtrafik-
snätverk eller hur diversifierar vi investeringsportföljer, krävs
det att vi förstår varje nätverks funktion och principer.

Nätverksforskare analyserar strukturen i nätverk i jakt på klus-
ter: grupper av objekt som är mer kopplade till varandra än till
resten av nätverket. Kluster utgör byggstenarna, eller delsys-
temen, i nätverken och låter oss representera dessa med fören-
klade modeller. Att analysera kluster och deras interaktioner
hjälper oss att ta reda på hur nätverk fungerar.

I denna avhandling vidareutvecklar vi den så kallade kart-
ekvationen, en informationsteoretisk klusterdetekteringsmetod.
Kartekvationen följer principen om minsta beskrivningslängd
och förutsätter fullständiga data i nätverk som bara består av
en typ av noder. Vi utmanar dessa antaganden och anpassar
kartekvationen för klusterdetektering i nätverk som består av
två typer av noder och ofullständiga nätverk där viss data sak-
nas. Vi dyker också djupare in i kluster och härleder lösningar
för hur vi, baserat på kluster, kan identifiera inflytelserika objekt
i nätverk och förutsäga länkar som (ännu) inte existerar.

iv

Zusammenfassung

Wir leben in einer hochgradig vernetzten Welt und finden Netz-
werke wo auch immer wir hinschauen: soziale Netzwerke, öf-
fentliche Verkehrsnetze, Telekommunikationsnetze, Finanznetz-
werke und mehr. Diese Netzwerke können immens komplex
sein und potenziell Millionen oder sogar Milliarden miteinan-
der verbundener Objekten umfassen. Um beantworten zu kön-
nen, wie wir die Ausbreitung von Krankheiten in Kontaktnetz-
werken kontrollieren, öffentliche Verkehrsnetze optimieren oder
Anlageportfolios diversifizieren können, müssen wir die Funk-
tionsweise und Arbeitsprinzipien dieser Netzwerke verstehen.

Netzwerkwissenschaftler analysieren die Struktur von Netz-
werken auf der Suche nach Communities: Gruppen von Objek-
ten, die Cluster bilden und stärker miteinander verbunden sind
als mit dem Rest. Communities repräsentieren die Bausteine
von Netzwerken, entsprechen ihren Subsystemen und erlauben
es uns, Netzwerke mit vereinfachten Modellen darzustellen. Com-
munities und ihre Interaktionen untereinander zu verstehen hilft
uns dabei, zu enträtseln, wie Netzwerke funktionieren.

In dieser Doktorarbeit verwenden wir die sogenannte Karten-
gleichung, ein informationstheoretischer Ansatz zur Community-
Erkennung. Die Kartengleichung folgt dem Prinzip der mini-
malen Beschreibungslänge und nimmt an, dass Netzwerke einen
Knotentypen haben und ihre zugrundeliegenden Daten vollstän-
dig sind. Wir stellen diese Annahmen infrage und passen die
Kartengleichung zur Community-Erkennung in Netzwerken mit
zwei Knotentypen und unvollständigen Daten an. Darüber hin-
aus leiten wir Ansätze ab, die, basierend auf Communities, ein-
flussreiche Objekte in Netzwerken identifizieren und (noch) nicht
existierende Verbindungen zwischen Objekten vorhersagen.

vi

List of Papers

This thesis is based on the following papers:

I Mapping Flows on Bipartite Networks
Christopher Blöcker and Martin Rosvall
Physical Review E 102, 052305, November 2020

II Mapping Flows on Weighted and Directed Networks with Incomplete Observations
Jelena Smiljanić, Christopher Blöcker, Daniel Edler, Martin Rosvall
Journal of Complex Networks, Volume 9, Issue 6, December 2021

III Map Equation Centrality: Community-aware Centrality Based on the Map Equation
Christopher Blöcker, Juan Carlos Nieves, Martin Rosvall
Applied Network Science, Volume 7, Issue 1, August 2022

IV Similarity-based Link Prediction from Modular Compression of Network Flows
Christopher Blöcker, Jelena Smiljanić, Ingo Scholtes, Martin Rosvall
arXiv Preprint 2208.14220

Other work by the author that is not included in this thesis:

V Sustainable International Experience: A Collaborative Teaching Project
Thomas Mejtoft, Helen Cripps, Stefan Berglund, Christopher Blöcker
Proceedings of the 16

th International CDIO Conference,
Gothenburg, Sweden, 9-11 June 2020

VI Internationalization at home: An international interdisciplinary experience
Thomas Mejtoft, Helen Cripps, Christopher Blöcker
8:e Utvecklingskonferensen för Sveriges ingenjörsutbildningar,
Karlstads Universitet, 24-25 November 2021

VII International Professional Skills: Interdisciplinary Project Work
Thomas Mejtoft, Helen Cripps, Christopher Blöcker
Proceedings of the 18

th International CDIO Conference,
Reykjavík, Iceland, 13-15 June 2022.

viii

Preface

There is a way out of every box,
a solution to every puzzle;
it’s just a matter of finding it.

Jean-Luc Picard
In: Star Trek: The Next Generation

During the past five years, I’ve had a lot of puzzles to solve.
At the time, each of them seemed overwhelmingly unsolvable.
All the projects I worked on had at least one moment when I
thought I had reached a dead end. And then what, throw it
all away because it doesn’t work as it should? In most cases it
was just a small mistake in an equation or a line of code that
wasn’t correct. But in other cases, the problem was more pro-
found and I needed to look at it from another angle, adjust my
assumptions, and accept that science doesn’t always work the
way I wanted it to. Eventually, I managed to find a solution to
most puzzles, or at least those ones that mattered.

My thesis is yet another puzzle: what is its purpose, what do I
want to say? I decided that I wanted to make my research easy to
understand for readers who are generally interested in science.
Therefore, I have provided a bit more background than the bare
minimum to understand my research, used simple undirected
example networks, and explained things in more detail than I
usually would in a paper. I have also experimented with a way
to visualise Huffman codes that I haven’t used before, and hope
that it helps to make clear what’s going on. I hope you’ll enjoy
reading about my research.

x

And for the future, I’m sure there will be many more puzzles to
solve because. . .

The trial never ends.

Q
In: Star Trek: The Next Generation

Introduction

Hit it.

Christopher Pike
In: Star Trek: Strange New Worlds

nodes

links

Figure 1: Three fully-
connected communities
in a network, shown by
colours. Communities
can be easy to spot in
small networks.

Today’s world is highly connected and is getting more connected
by the day. Wherever we look, we find networks. For exam-
ple, there is our social network of friends, the traffic network
we use for our daily commute, digital communication networks,
the global financial network. . . Despite their vastly different do-
mains, such networks share structural properties: their parts
form clusters, tightly-knit communities of objects that belong
together (Figure 1). In social networks, such communities are
groups of people where most people are friends with each other.
In traffic networks, roads connect crossings within neighbour-
hoods, cities, and regions, forming communities at different sca-
les. In financial networks, communities are groups of actors who
trade with each other. Such networks can be immensely com-
plex, with potentially several millions of nodes and links, which
makes it difficult to grasp them. Network scientists study net-
works to understand how they work, and, to simplify them, they
search for communities. If we know a network’s communities,
we can, instead of looking at the network as a whole, examine
each community separately and focus on the communities’ in-
terplay.

In this thesis, we work with the map equation framework, an
information-theoretic community detection approach that uses
compression to find network communities. On a conceptual
level, the map equation simulates a random walk through the

2

networks’ nodes to reveal its structure. A so-called random
walker begins at one of the network’s nodes, picks one of the
node’s links, follows it to the next node, picks another link,
follows it to the next node, and so on, generating a sequence
of nodes whose regularities depend on the network’s structure
(Figure 2). Understanding those regularities enables us to de-
vise an efficient way to encode, or compress, all possible node
sequences that a random walker can generate on a network.

Figure 2: A random
walk on a network.

The map equation was originally designed to detect commu-
nities in networks that have exactly one node type, and it as-
sumes that the network data is complete, that is, that no links
are missing. In other words, it simply describes the structure
it finds when simulating random walks1. However, real-world1 In practice, the map

equation does not ac-
tually simulate random
walks, but they are a
good way to explain
what is going on under
the hood.

networks can be more complicated, with nodes of different types
or missing data, invalidating the map equation’s assumptions.
Moreover, we often want to do more than find a network’s com-
munities, for example, we want to know which nodes are influ-
ential, or what links are likely to form in the future.

We look at the map equation through a coding-lens in this
thesis, and study (i) community structure in bipartite networks2,2 In bipartite networks,

there are exactly two
node types, and links
connect only nodes of
different types.

(ii) how we can avoid detecting spurious communities in net-
works with missing data, (iii) how we can identify influential
network nodes, and (iv) how we can predict links that do not
(yet) exist. In all four cases, we use the map equation’s coding
schemes for describing random walks to understand the chal-
lenges and to devise a solution. We explicitly distinguish be-
tween the node types in bipartite networks to compress bipar-
tite random walks more efficiently. We use a Bayesian approach
to account for missing data and to minimise the effect on what
would be the optimal coding scheme with complete data. We de-
rive a centrality score from the map equation’s coding scheme to
rank nodes by their importance. We interpret the coding scheme
as an implicit embedding of the network’s nodes, and use it to
calculate similarities between node pairs to predict links.

This thesis contains three parts: (I) a background sections that
provides the necessary preliminaries about network science and
the map equation, (II) the thesis’ contributions with details about
(i)-(iv), and (III) a summary of the contributions.

Part I

Background

Network Science

If you want to understand
function, study structure.

Francis Crick

Network science is a discipline with contributions from com-
puter science, mathematics, statistics, and other fields, and has
applications in sociology and social network analysis [18, 26,
76], urban planning [15, 44, 57], logistics [11, 62], biology [16,
32, 45], ecology [24, 36, 80], finance [12, 75], and other areas
[56]. The common theme amongst network science applications
is that they use network models to represent phenomena and
real-world systems, analyse those networks, and use the insights
to explain observations and make predictions. That is, the aim
is to understand how a real-world phenomenon works through
modelling it as a network and analysing its structure. But what
exactly is a network?

The Birth of Graph Theory

To answer the question what a network is, we take a short detour
to Leonhard Euler who is often credited for inventing the field
of graph theory in 1735 [53]. In what came to be known as the
Seven Bridges of Königsberg problem, Euler was asked to find a
round trip that crosses each of the seven bridges over the Pregel
river in Königsberg exactly once (Figure 3).

Euler modelled the problem as a graph3, a mathematical ob- 3 Some authors distin-
guish between networks
and graphs, but we treat
them as synonymous
[56, p. 105].

ject consisting of nodes and links, representing land masses with
nodes, and bridges with links (Figure 4). In graph theory terms,

6 through the coding-lens

Euler was looking for a round trip that starts and ends at the
same node, and uses each link exactly once; today such a round
trip is also known as a Eulerian cycle. He showed that a Eule-
rian cycle exist if and only if all nodes in the graph have even
degree4, and concluded that the round trip he was supposed to4 The degree of a node

is the number of links it
has.

find cannot exist.

Figure 3: A map of the
city Königsberg and its
seven bridges over the
Pregel river [52].

Figure 4: Graph model
of the Seven Bridges of
Königsberg problem.

Formally, a graph is a pair, G = (V, E), where V is the set of
nodes, and E ⊆ V×V is the set of links5. Links represent binary

5 In mathematics, nodes
are usually called ver-
tices, and links are
called edges, explaining
the symbols V and E.

relationships between nodes, for example friendship between
persons in social networks. We call nodes that are connected
by a link adjacent, and say that they are neighbours. Graphs
can be directed, then we draw the links as arrows that point
from one node to another, and, similar to one-way streets, they
can only be used in the direction they are pointing; or they can
be undirected, then we draw links as lines between nodes, and
they can be used in both directions. Often, there are values
attached to links, so-called weights, that specify the strength of
the relationship. A weighted graph is a triple, G = (V, E, δ),
where δ : V ×V → R is a function that assigns weights to links6

6 We will only consider
positive link weights.

(Figure 5).
1

1

2

23

1

2 3

4

Figure 5: A directed
and weighted graph
where link weights are
shown by labels and
link thickness.

There are more graph model variants, for example multi-
graphs such as Euler’s seven bridges graph where multiple links
can connect the same node pairs, or hypergraphs where links
can connect an arbitrary number of nodes. However, unless oth-
erwise noted, we focus on simple weighted graphs.

network science 7

Graphs as Matrices

We can define a graph by specifying its set of nodes and set
of edges including weights, or by drawing it. But we can also
represent it as a matrix and use linear algebra methods to anal-
yse it. Converting a graphical representation of a graph into an
equivalent matrix representation is quite straightforward. Con-
sider again the directed and weighted graph in Figure 5, and its
adjacency matrix A as well as its transition matrix T,

A =

0 0 3 0
1 0 0 0
0 1 0 2
2 0 0 0

 , T =

0 0 1 0
1
3 0 0 0
0 1 0 1
2
3 0 0 0

 .

The adjacency matrix A specifies which nodes are connected by
a link and with what weight. For example, the first column
shows that node 1 has two outgoing links: one of them points at
node 2 and has weight 1, and the other one points at node 4 and
has weight 2. The transitions matrix T is closely related with
the adjacency matrix: it describes what fraction of a node’s total
outgoing link weight is assigned to each of its outgoing links,
which corresponds to the rate at which a random walker uses
each respective link. We obtain the transition matrix T by divid-
ing the values in each column of A by the sum of the column’s
values.

Bipartite Graphs

Figure 6: A bipartite
network with four left
nodes, four right nodes,
and nine links.

Bipartite graphs are a special kind of graphs with two distinct
sets of nodes, often called left and right nodes, where links are
only allowed to run between different node types. Formally, a
bipartite graph is a quadruple G = (L, R, E, δ), where L and R
are the sets of left and right nodes, E ⊆ L× R is the set of links,
and δ : L× R→ R is a function that assigns weights to the links.
Figure 6 shows an example of a bipartite graph with four left
nodes, four right nodes, and nine links. Typical examples for bi-
partite networks are user-movie rating networks where users are
connected to movies if they have rated them, customer-product

8 through the coding-lens

purchase networks where customers are connected to the prod-
ucts they have bought, or ecological networks between species
and the resources they use7.

7 Links that connect
nodes with the same
type, such as user-user
or movie-movie connec-
tions, are not allowed
in bipartite networks.

Modelling with Networks

Networks are simple, yet powerful tools for modelling real-world
phenomena. But just as with any kind of model, using networks
as models requires making assumptions and simplifications. Of-
ten, there are several options of how to exactly represent some-
thing as a network, each with different advantages and draw-
backs. Depending on the research question, we need to decide,
for example, what the nodes are, what relationships between the
nodes are important and should be included, and how to define
link weights. We also need to keep in mind that the results of
our analyses can only be as good as our model is: we can only
derive meaningful insights about the real world if the model
reflects it accurately enough [70, 78].

Solving Graph Theory Problems

There are countless problems in graph theory, many of which we
encounter in our everyday lives, perhaps even without thinking
about it. We have already discussed the Eulerian cycle problem,
that is, given a graph G, decide whether G has a Eulerian cycle.
As we saw, it is easy to give an answer: we simply need to check
whether all node degrees are even, and, if so, the graph has a
Eulerian cycle8.

8 If we are interested to
know whether a graph
has a Eulerian cycle,
chances are that we also
want to find one. Luck-
ily, there are efficient al-
gorithms to do this [21].

Graph theory problems usually come in either of two forms:
as decision problems, or as optimisation problems. In a decision
problem, the task is to determine whether a graph has a certain
property; in an optimisation problem, the task is to compute the
best solution, given an optimisation criterion, such as finding
the shortest path from a start node to a target node. However,
conceptually there is no difference and decision problems can be
converted to optimisation problems and vice versa [28, p. 19].

Complexity theory9 quantifies how difficult a problem is by

9 An excellent introduc-
tion to complexity the-
ory is the classic book
by Garey and Johnson
[28], as well as the intro-
duction from a formal
language point of view
by Sipser [73]. relating the problem’s size to the minimum number of steps that

network science 9

any algorithm needs to execute on a computer to find a solution
when confronted with the most difficult example of that prob-
lem — this is also called the problem’s complexity. In graph
theory, the size of a problem is typically the number of nodes,
n, or number of links, m; the problem’s complexity is expressed
as a function of its size. For practical matters, we can group
problems into easy and hard ones. Easy problems, also called
tractable, are those whose complexity is bound by a polynomial,
for example when a problem with size n needs quadratically
many steps, we say that it is in complexity class O(n2). Other
examples for easy classes are O(√n), O (n), O (n log n), and
O(nk)10. In contrast, hard problems, also called intractable, are 10 So long as k is a con-

stant.those whose complexity is not bound by a polynomial, for ex-
ample O(2n). Essentially, computers can solve large examples
of easy problems quickly, but may need hundreds of years to
solve moderately sized hard problems. This is because the best
known approach to solve hard problems is trying all possible
solutions11. If it suffices to find a good enough solution instead 11 This does not mean

that no better algorithm
exists, but so far, no one
has found one [5].

of the best one, we can solve hard problems, albeit only ap-
proximately, within a reasonable amount of time using so-called
heuristics or approximation algorithms. The trade-off is, how-
ever, that we may occasionally end up with a bad solution and
no way of telling how bad it is.

Knowing how to solve a graph theory problem efficiently
makes a difference in at least two ways. First, and on a more
practically note, it enables a more sustainable approach using
fewer resources, such as time or money, when we implement
the solution in reality. Second, it means that we have gained a
deeper understanding of the world around us.

Graph Theory in Everyday Life

A problem that many of us face every day is finding shortest
paths. For example, when commuting to work, whether by car,
bicycle, or public transport, we want to be efficient about it and
take the fastest or shortest route12. But the best route is not al-

12 Given a graph with n
nodes and m links, Di-
jkstra’s algorithm solves
the shortest path prob-
lem in O (m + n log n)
time [27, 56].

ways the same. During rush hour, the shortest route may require
considerably more time than one that is longer but less busy. If

10 through the coding-lens

we miss a connection because the bus was late, it may be faster to
change our itinerary than sticking to our original plan. Clearly,
the best route does not only depend on the network’s structure,
but changes with how others behave, that is, the dynamics on
the network.

Another common problem is the travelling salesman prob-
lem, named after a hypothetical salesman who wishes to make
a round trip through a number of cities while minimising his
overall travel distance13. It comes up, for example, when a post-13 The travelling sales-

man problem is hard. man plans his delivery route, or when a worker plans a route
through a warehouse to pick products from the shelves to com-
pile customers’ orders. In many cases, the network does not
constrain the round trip and it is possible to visit the nodes in
any order. But again, the current dynamics on the network, such
as traffic patterns depending on the time of the day, determine
which round trip is an efficient one.

Community Detection

Community detection is our main focus in this thesis; it is the
task of finding groups of nodes, called modules or communi-
ties14, that are similar to each other in some sense. There is no

14 We use the terms
module and community
interchangeably.

single agreed upon definition of what a community is [25], so a
group of pairwise disconnected nodes can be seen as one, called
a dis-assortative community. However, we adopt the view of
assortative communities, tightly-knit groups of nodes that are
more connected to each other than the rest of the network (Fig-
ure 7) [55].

Figure 7: A net-
work with three fully-
connected communi-
ties, shown by colours.

The perhaps most intuitive community detection application
is identifying groups of friends in a social network. But similarly,
we may wish to find groups of proteins that interact with each
other more than with others, sub-systems in an infrastructure
network such as the road network or power grid, or categories of
concepts in a knowledge graph. In all these cases, communities
help us understand the networks’ organisational structure and
allow us to simplify them. Knowing their communities, we can
reduce networks to their components and connections between
those components15, interpreting them as systems of interacting

15 Some networks have
a hierarchical organisa-
tion so that we can re-
peat this simplification
several times, resulting
in communities of com-
munities.

network science 11

sub-systems.
Just as there are many different ways to define what a com-

munity is, there are different approaches to detect them. Stochas-
tic blockmodels are a class of approaches that generate modu-
lar networks by placing links between nodes according to some
probability distribution, depending only on the nodes’ block
memberships. Given an empirical network, stochastic block-
models can be turned into a community detection approach
by fitting their parameters using, for example, maximum like-
lihood estimation or Bayesian inference [37, 61]. Modularity is
an objective function that measures, given a network and a par-
tition of its nodes into communities, how many links fall within
those communities compared to how many links we would ex-
pect if they were placed at random [54]. The so-called Louvain
and Leiden algorithms are heuristics that search for communi-
ties through maximising modularity [9, 79]. Compression-based
community detection methods follow the principle that objects
which compress more efficiently together should be grouped to-
gether [71]. The map equation, an information-theoretic com-
munity detection approach based on coding theory follows this
idea; it is our main focus of study and we review it in detail in
the next chapter, and extend it in papers I and II.

Influential Nodes Figure 8: A network
with two communities,
connected through one
node. Which of the
ten nodes is most influ-
ential? The answer to
this question depends
on how we measure in-
fluence.

Who are the most influential persons in a social network (Fig-
ure 8)? Intuitively, we might say that those with the most con-
nections to others are most influential. But what about someone
who has relatively few connections, but is only connected to the
most connected persons? Or someone who, through their po-
sition, controls the exchange of information between different
groups in the network? Identifying influential nodes has ap-
plications such as finding relevant web pages when searching
the world wide web for information, selecting critical infrastruc-
ture components to secure them with backups, and discovering
persons who drive the spread of a disease to plan vaccination
strategies.

Node centrality measures quantify how central, or influential,

12 through the coding-lens

nodes are, for example based on their features or their position
in the network [13]. One of the simplest centrality measures,
degree centrality, considers nodes with a higher degree as more
important. Betweenness centrality regards a node as more cen-
tral the more shortest paths between other nodes pass through
it. PageRank determines node centrality by setting up a recur-
sive reputation system where a node’s centrality derives from
the centrality of its neighbours and their support [31]. These
measures, as well as others, consider nodes in isolation or in
a global context when determining their centrality. Conversely,
community-aware centrality measures use communities to de-
termine node centrality. In paper III, we use the map equation
to develop a community-aware centrality score.

Link Prediction

When we observe real-world phenomena and collect data to
model them as networks, we may only be able to see a parts of
the full picture. There are different reasons why this can happen,
for example, nodes that interact only infrequently with others
can remain inactive during the observation period. In some net-
works, links may be difficult to observe, such as protein-protein
interactions in biological experiments. Certain links may not
have formed yet, for example customers who have not bought a
product yet. With a longer observation period, better measure-
ment tools, or if we re-examine the network at a later point in
time, we would potentially get a more complete picture.

Link prediction approaches take a network, analyse its link
patters, and try to predict which of the links that are not present
in the network should exist. This typically assumes some sort of
process according to which the network has formed, and only
really makes sense when we have reason to believe that the net-
work is incomplete. In some technological networks, for exam-
ple, where we know that the data is complete, we can technically
apply link prediction approaches, but we have to ask ourselves
whether it makes sense to do so. In paper IV, we develop a
link prediction approach based on the map equation that uses
communities to predict links.

The Map Equation

Trees sprout up just about
everywhere in computer science. . .

Donald Knuth

The map equation is a community detection approach that com-
bines ideas from information theory and coding theory with ran-
dom walks [66]; and it is the basis for the works that we discuss
in this thesis. Roughly speaking, given a network and a parti-
tion of its nodes into modules, the map equation measures how
well the partition describes the network’s structure16. Given two

16 Informally, a partition
describes the network
structure well when the
density of links within
modules is high, and
low between.

different partitions for the same network, we can use the map
equation to calculate which one is better (Figure 9). And to find
the best partition, we minimise the map equation with a search-
based approach. But how exactly does the map equation work?
To answer this, we need to cover some background on random
walks and Huffman codes.

Figure 9: Two different
partitions for the same
network where colours
show modules. Which
partition describes the
network’s structure bet-
ter?

Network Flow and Random Walks

Imagine a social network where people are connected if they are
friends, and let us assume that one of the persons in the net-
work has a ball. The person with the ball randomly chooses one
of their friends, and passes the ball to that friend. We repeat this
over and over. If we looked at how the ball moves through the
network, we would see that, once it gets passed into a tightly-
knit group of friends, it tends to stay there for some time. This is
simply because there are many links within such a community,
but only few links through which the ball can leave the com-

14 through the coding-lens

munity. We would also see the ball return to people with more
links more often because they have more friends who can pass
the ball to them (Figure 10).

Figure 10: A ball pass-
ing game.

We can model phenomena like the ball passing game with so-
called random walks [50]. Given a graph G = (V, E, δ), we ran-
domly pick a starting node at which we place a random walker.
The random walker chooses an outgoing link from that node
proportional to the links’ weights, and follows that link; that
is, the random walker is more likely to pick a link with higher
weight. When the random walker is at node u, the probability
to visit node v next is

pu→v =
δ (u, v)

∑v′∈V δ (u, v′)
. (1)

We call pu the visit rate of u, or the flow of u17; it is the probabil-17 Node flow is a cen-
trality measure that has
been used in several ap-
plications [31], but it ig-
nores communities.

ity that the random walker is at node u. In undirected networks,
we can calculate pu directly as

pu =
∑v∈V δ (u, v)

∑w∈V ∑v∈V δ (w, v)
, (2)

that is, it is proportional to u’s weighted degree. For directed
networks, there is no closed-form expression to calculate the
visit rates, but we can calculate them through a simulation. We
begin with a uniform flow distribution, setting the visit rates at
time t = 0 to pu,0 = 1

|V| for all nodes u ∈ V. Then, we update
the visit rates until we find a stable flow distribution that does
not change any more when we run more update steps — this
approach is also known as a power iteration [31] — using the
update rule

pu,t+1 ← ∑
v∈V

pv,t ·
δ (v, u)

∑v′∈V δ (v, v′)
. (3)

That is, at each time step t, each node takes its flow and sends
it to its neighbours along its outgoing links, dividing it pro-
portional to the links’ weights. We stop the simulation when
pu,t+1 = pu,t for all nodes u ∈ V. The resulting flow distribution
corresponds to the leading eigenvector of the graph’s transition
matrix, and has only strictly positive entries [56, p. 160].

However, there is a catch: this approach only works if the net-
work is strongly connected, that is if every node v is reachable18

18 A node v is reachable
from u if there is a path
leading from u to v.

the map equation 15

from every other node u. In this case, the Perron-Frobenius the-
orem guarantees that the flow distribution we are looking for
exists [56, p. 161]. But if the network is only weakly connected,
that is if we need to ignore link directions for nodes to be pair-
wise reachable, we are in trouble. The problem is, essentially,
that in weakly connected networks, there are nodes where the
random walker can get stuck because they have no outgoing
links, or nodes that the random walker cannot reach because
they have no incoming links (Figure 11). To fix this problem,
we relax the rules for the random walk and allow the random
walker to teleport, making it possible to escape from nodes with
no outgoing links and to reach nodes with no incoming links.
There are many options for how exactly we can implement tele-
portation. A common approach is through uniform node tele-
portation19 where the random walker teleports at a small rate r, 19 This approach is used

in PageRank for rank-
ing websites.

typically r = 0.15, to a node chosen uniformly at random [31].
With uniform node teleportation, the simulation update rule be-
comes

pu,t+1 ← r · 1
|V| + (1− r) · ∑

v∈V
pv,t ·

δ (v, u)
∑v′∈V δ (v, v′)

. (4)

Another option is so-called smart teleportation where the ran-
dom walker teleports to links instead of nodes at a small rate r
[42]. Uniform node teleportation and smart teleportation change
the random walk’s dynamics in different ways and have differ-
ent advantages; in paper III, we investigate how they affect iden-
tifying influential nodes based on community structure [3]. In
paper II, we develop a teleportation scheme where the telepor-
tation rate depends on the random walker’s current node, and
the target node depends on the nodes’ incoming degrees [2].

Figure 11: A weakly
connected network. Af-
ter leaving the yellow
node, a random walker
can never return. Even-
tually, every random
walker will get stuck at
the orange nodes.

We can use random walks to model the flow of many pro-
cesses, for example how people exchange ideas in social net-
works, how diseases spread through human contact networks,
how users surf the world wide web by following hyperlinks,
or how travellers use traffic networks. In some cases, random
walkers have memory: users who surf the web are more likely
to follow links that belong to a certain topic, and travellers are
more likely to return to where they started their journey [10,
68, 81]. In general, with memory, the next random walker step

16 through the coding-lens

depends on some, or all, of the previous steps. But in this the-
sis, we focus on random walks without memory, and assume
that the next step a random walker takes only depends on the
current node.

Huffman Coding

Freq. Codeword

A 8.17 1110

B 1.49 110000

C 2.78 01001

D 4.25 11111

E 12.70 100

F 2.23 00101

G 2.02 110011

H 6.09 0110

I 6.97 1011

J 0.15 001001010

K 0.77 0010011

L 4.03 11110

M 2.41 00111

N 6.75 1010

O 7.51 1101

P 1.93 110001

Q 0.10 001001001

R 5.99 0101

S 6.33 0111

T 9.06 000

U 2.76 01000

V 0.98 001000

W 2.36 00110

X 0.15 001001011

Y 1.97 110010

Z 0.07 001001000

Table 1: Example Huff-
man code for the Latin
alphabet with letters A-
Z based on the letters’
frequencies (in %) in
English [88].

Huffman coding, named after David A. Huffman, is a way to
compress information in a lossless way by mapping symbols
from a source alphabet to sequences of symbols from a target
alphabet, called codewords. At a basic level, the idea is to assign
shorter codewords to more common symbols. Take, for exam-
ple, the Latin alphabet consisting of 26 letters, A = {A, . . . , Z}
as the source alphabet20, and the binary alphabet B = {0, 1}

20 For convenience, we
ignore digits, punctua-
tion marks, blanks, . . .

as the target alphabet. Table 1 shows an example Huffman
code that maps A to B+ based on letter frequencies in English,
where B+ denotes sequences of symbols from B. To encode
a text, we take one symbol at a time and map it to its code-
word, for example THE QUICK BROWN FOX would be en-
coded as 000 0110 100 001001001 01000 1011 01001 0010011

110000 0101 1101 00110 1010 00101 1101 001001011, where
the underlined sequences mark the original words.

How much did we compress the data in the example? This
depends on how it was represented to start with, but let us as-
sume it was stored in an ASCII-encoded text file with 7 bits per
character. For 16 characters, this requires 112 bits. Using the
Huffman code in Table 1, we only need 81 bits; on average, we
expect to use 4.2 bits per symbol.

How much more can we compress the data without destroy-
ing information? Claude E. Shannon studied this question and
laid the foundation for the field of information theory in his fa-
mous 1948 paper A mathematical theory of communication [72]. He
showed that the theoretical lower bound for a lossless compres-
sion is the entropy of the source21,

21 By source, we mean
some sort of random
process that generates
sequences of outcomes.
Here, it is the English
language that generates
letters, but it could also
be tossing a coin that
generates heads or tails,
rolling a die that gener-
ates the faces 1-6, or the
ball passing game that
generates a sequence of
persons.

H (A) = − ∑
x∈A

px log2 px, (5)

where x is a source symbol, and px the frequency at which it ap-
pears. However, Shannon only considered the theoretical lower

the map equation 17

bound, but no specific compression algorithm, and, in fact, no
compression algorithm that is guaranteed to reach the lower
bound exists. The Huffman code in Table 1 with 4.2 bits per
symbol gets pretty close to the lower bound of approximately
4.18 bits per symbol, derived from the symbols’ frequencies us-
ing Equation (5). Huffman codes can be constructed using a
simple and efficient algorithm, and they are optimal in the sense
that they get as close to the entropy as it is possible for codes
that encode one symbol at a time [35, 46].

Freq.

A 0.10
B 0.25
C 0.15
D 0.15
E 0.35

Table 2: Five symbols
and their frequencies.

(a)

A

B

C

D

E

0.10

0.25

0.15

0.15

0.35

(b)

A

B

C

D

E

0.25

0.25

0.15

0.35

(c)

A B CD

E

0.25 0.40

0.35

(d)

0 1 0 1

0 1

0
1

A B CD

E

Figure 12: Constructing
a Huffman code. (a) We
create a node for each
symbol and label it with
the symbol’s frequency.
(b) We choose the two
nodes with the lowest
frequencies and connect
them into a tree, la-
belled with the sum of
their frequencies. (c) We
combine the next two
lowest frequeny nodes
into a tree. (d) When
all nodes are part of
a single tree, we label
its links to obtain code-
words.

Let us construct a binary Huffman code for an alphabet with
five symbols, A5 = {A, B, C, D, E}, with frequencies as shown in
Table 2, and entropy H (A5) ≈ 2.18 bits. We first create a node
for each symbol and label it with its frequency (Figure 12(a)).
Then, we select the two nodes with the lowest frequencies, con-
nect them through a new node such that the new node forms the
root of a tree, and label the root with the sum of the two nodes’
frequencies (Figure 12(b)). If more than two nodes share the
same lowest or second-lowest frequency, we can freely choose
amongst them. This changes what symbol receives which exact
codeword, but it does not change the average codelength. We
repeat the same step, select the two lowest-frequency nodes or
trees, and connect them into a new tree, again possibly choosing
between different options (Figure 12(c)). Finally, when all nodes
are part of a single tree (Figure 12(d)), we label its links: those
links that point at a sub-tree to the left are labelled with 0, and
those ones that point at a sub-tree to the right are labelled with
1. To find a symbol’s codeword, we begin at the tree’s root and
follow the links leading to the corresponding node, reading the
labels along the way. For example, the codeword for D is 001.

18 through the coding-lens

While constructing Huffman codes, we can often choose be-
tween different lowest-frequency options, which affects how ex-
actly the final tree looks like. That is, for the same symbols and
symbol frequencies, we can construct potentially many Huffman
codes, all of which are optimal. The simplest way to obtain an-
other optimal Huffman code, given a Huffman code, is to flip all
0s and 1s.

However, when the source’s statistics change, Huffman codes
are no longer optimal. For example, Huffman codes based on
the letter frequencies in German or Swedish would assign differ-
ent codewords to the symbols because the letters have different
frequencies in different languages. For the same reason, a Huff-
man code that is optimised for English would be suboptimal
for compressing German texts. Relative entropy, also known as
Kullback-Leibler divergence, quantifies how many extra bits we
use per symbol if we encode a text with letter frequencies P but
use a Huffman code that is optimised for letter frequencies Q,

DKL (P∥Q) = − ∑
x∈A

px log2
qx

px
. (6)

Random Walks + Huffman Coding ≈ Map Equation

To explain how the map equation works, let us consider a com-
munication game where a sender observes how a random walker
moves on a network and uses codewords to tell a receiver where
the random walker is22. That is, we have a graph, G = (V, E, δ),

22 In the ball passing
game, for example, this
means communicating
who has the ball every
time it is passed on. and consider its nodes as symbols. For simplicity, we choose an

undirected graph (Figure 13), and calculate the nodes’ visit rates
with Equation (2) to design a Huffman code that sender and re-
ceiver use for communication (Table 3). Every time the random
walker moves to a new node, the sender transmits the corre-
sponding codeword to the receiver. For example, to describe
the node sequence 3 2 1 3 5 6 9 7 6, the sender communicates
the codeword sequence 10 000 0110 10 001 010 1111 110 010

to the receiver, 27 bits in total, using exactly one codeword per
random-walker step. On average, the coding scheme uses 3.125

bits per step of the random walker.

u pu w (u)

1 2/24 0110

2 3/24 000

3 4/24 10

4 2/24 0111

5 4/24 001

6 3/24 010

7 3/24 110

8 1/24 1110

9 2/24 1111

Table 3: One-level Huff-
man code for the net-
work in Figure 13.

the map equation 19

1

2

3 4

5 6

7

8

9
0110 3.58

000 3.0

10 2.58 0111 3.58

001 2.58

010 3.0

110 3.0

1110 4.58

1111 3.58 Figure 13: A network
with eight nodes and
twelve links. Code-
words and their the-
oretical length in bits
are shown next to the
nodes. The black trace
shows a possible ran-
dom walker trajectory.

Again, the compression limit is determined by the entropy
of the source, in this case the nodes’ visit rates, that is, the the
theoretically best possible compression uses on average

H (P) = ∑
p∈P

p log2 p ≈ 3.07 bits, (7)

per random-walker step, where P is the set of node visit rates.
We will refer to the entropy of the source, or the minimum av-
erage per-step number of bits, simply as codelength. Figure 14

visualises the Huffman code from Table 3 with blocks whose
height is proportional to the codeword usage rates.

1 0110

2 000

3 10

4 0111

5 001

6 010

7 110

8 1110

9 1111

Figure 14: Visualisation
of the Huffman code
from Table 3, the block
heights are proportional
to codeword usage rates
pu for node u.

But this is not the end of the story; the sender can actually
compress the random walk’s description further. To do that, we
change our interpretation of the network: instead of a single sys-
tem, we consider the network as an ensemble of interconnected
sub-systems, or modules, between which the random walker can
switch. In terms of the ball passing game, modules correspond
to tightly-knit groups of friends, and the ball can be passed from
group to group. For each module, we design an individual Huff-
man code, including a designated exit codeword for describing
when the random walker leaves the module. We also add an
extra Huffman code at the index level with entry codewords
for each module to describe when the random walker enters
a module. The map equation formalises this idea and calcu-
lates the ensemble’s overall entropy as the sum of the entropies
at module and index level, each weighted by the rate at which
the corresponding Huffman code is used [66]. If we can find a
good split of the network into modules, one that leads to a lower
overall entropy, we can compress the random walk’s description
further.

20 through the coding-lens

The map equation calculates the codelength for a given split
of the network into modules, M,

L (M) = q · H (Q) + ∑
m∈M

pm · H (Pm) , (8)

where Q = {qm,enter | m ∈ M} is the set of module entry rates,
and Pm = {pu | u ∈ m} ∪ {pm,exit} is the set of node visit rates
for nodes in module m, including the module exit rate for m; q =

∑m∈M qm,enter is the usage rate of the index-level codebook, and
pm = pm,exit +∑u∈m pu is the usage rate of the module codebook
for module m.

u pu w (u)

Aenter 1/2 0

Benter 1/2 1

1 2/16 110

2 3/16 10

3 4/16 00

4 2/16 1110

5 4/16 01

Aexit 1/16 1111

6 3/10 00

7 3/10 01

8 1/10 110

9 2/10 10

Bexit 1/10 111

Table 4: Two-level Huff-
man code for the net-
work in Figure 15.

Figure 15: Splitting the
network into two mod-
ules leads to a modu-
lar coding scheme. We
can re-use the same
codewords across dif-
ferent modules and re-
duce the overall code-
length. Codewords and
their theoretical length
in bits are shown next
to the nodes. The mod-
ule entry and exit code-
words are shown next
to the coloured arrows.

1

2

3 4

5 6

7

8

9

A0 1.0 1111 4.0
B1 1.0 111 3.32

110 3.0

10 2.42

00 2.0 1110 3.0

01 2.0 00 1.74

01 1.74

110 3.32

10 2.32

A possible way to split our network into two modules is
shown in Figure 15, and gives us one codebook for the blue mod-
ule, one codebook for the orange module, and one codebook at
the index level. To design these codes, we interpret each module
as a separate source and normalise the visit rates per module to
sum to 1 (Table 4). With this new two-level coding scheme, the
sender describes the node sequence 3 2 1 3 5 6 9 7 6 with the
codewords 0 00 10 110 00 01 1111 1 00 10 01 00, 25 bits in
total, where the underlined sequences corresponds to initially
entering the blue module and the switch from the blue to the
orange module, respectively23. The map equation (Equation (8))

23 With a two-level cod-
ing scheme, the sender
uses one codeword to
describe intra-module
transitions, and three
codewords for inter-
module transitions.
Describing the starting
node requires two
codewords.

tells us that the two-level coding scheme (Figure 16) has a code-
length of

the map equation 21

L (M) = q · H (Q) + ∑
m∈M

pm · H (Pm) (9)

=
2

24
· H

(
1
2

,
1
2

)
index level

+
16
24
· H

(
2
16

,
3
16

,
4

16
,

2
16

,
4
16

,
1

16

)
blue module

+
10
24
· H

(
3

10
,

3
10

,
1

10
,

2
10

,
1
10

)
orange module

≈ 0.08 bits + 1.64 bits + 0.9 bits ≈ 2.62 bits,

an improvement over the one-level coding scheme that uses 3.07

bits per step on average. Partitioning the network into different
modules and using a Huffman code that has codewords only
for the nodes in the respective modules allows the sender to
describe the random walk more efficiently.

A 0
B 1

1 110

2 10

3 00

4 1110

5 01

exit 1111

6 00

7 01

8 110

9 10

exit 111

Figure 16: The modular
coding scheme from Ta-
ble 4. Block heights and
widths are proportional
to codeword usage rates
and module entropy, re-
spectively. Arrows rep-
resent module switches.

Could we improve the compression further by splitting the
network into even smaller parts? It depends. On the one hand,
splitting the network into more modules leads to shorter code-
words because modules become smaller and we can re-use the
same, short codewords in different modules. On the other hand,
more modules also mean that the index-level codebook grows
because we need one entry codeword per module, making mod-
ule switches more expensive. To achieve a short overall code-
length, we need to find a partition that balances between (a)
choosing a large number small modules to make intra-module
transitions cheap, and (b) choosing a small number of large
modules to make inter-module transitions cheap. Coming back
to our initial example, we can now say that the two-module par-
tition is a better description of the network’s structure than the
three-module partition (Figure 17).

Figure 17: The two-
module partition has
codelength 2.32 bits, de-
scribing the network’s
structure better than the
three-module partition
which has a codelength
of 3.34 bits.

Real-world networks are often more complex than our toy
example and can have, for example, more than two modules,
a hierarchical structure, or overlapping communities. We can
address all these things with the map equation [10, 20, 81, 82].
Contrary to some other community detection approaches, we do
not choose the number of modules we wish to detect. Instead,
when minimising the map equation, we learn how many mod-
ules a network has. In networks with hierarchical structure, we
can recursively apply the map equation and partition modules
further into sub-modules [67], obtaining a coding scheme with
more than two levels. And to address overlapping communi-

22 through the coding-lens

ties where, for example, persons can be members in different
groups of friends, we can use so-called higher-order networks
[68, 82]. The main goal, in all cases, is to understand how net-
works are organised, exploiting the information-theoretic dual-
ity between compression and structure: by understanding the
network’s structure better, we can design a more efficient cod-
ing scheme to describe the dynamics on the network [67].

Finding Communities

In short, the map equation is an information-theoretic objective
function that calculates the lower bound for the per-step descrip-
tion length of a Huffman code ensemble for describing random
walks on a network, given a partition of the network’s nodes
into modules. While random walks and Huffman codes are use-
ful tools to illustrate how the map equation works and what
minimising the map equation means, in practice, we do not actu-
ally simulate random walks24 or design Huffman codes during24 In principle, we could

approximate the nodes’
visit rates by simulating
random walks instead
of calculating them di-
rectly or with a power
iteration, for example in
case of a more compli-
cated ball passing game
[7]. However, we would
do this before minimis-
ing the map equation
and use the resulting
node visit and transi-
tion rates as an input.

the minimisation. Instead, after calculating the nodes’ visit and
transition rates, we use the map equation directly to measure a
partition’s codelength. What remains is to turn this idea around:
rather than measuring how good a partition is, we would like to
use the map equation to find a good partition. Roughly, we do
this by choosing some network partition as a starting point, and
measureing its codelength. Next, we check whether we can re-
duce the partition’s codelength by changing how the nodes are
split into modules. If that is possible, we change the partition,
and repeat until we can no longer reduce the codelength. The
heuristic search algorithm Infomap implements a more sophis-
ticated version of this basic strategy, reducing the chance to get
stuck in local optimisation minima, and detecting communities
in time O (m + n log n), where n is the number of nodes, and m
the number of links in the network [20]; Infomap is implemented
in an open source software package [19].

Open Questions

Nothing that is is unimportant.

Vulcan proverb
In: Strangers From The Sky

Equipped with the map equation and Infomap, we can detect
communities in large real-world networks, understand the net-
works’ structure, and simplify them by representing them as
networks of modules. Random walks help us explain why the
modules are what they are: because a random walker tends to
stay within modules for a relatively long amount of time. But in
reality, things are not always as simple and clean as in the small
networks we have considered so far.

Bipartite networks have two types of nodes that constrain link
patterns, specifically, links can only connect nodes with different
types. How can we use this constraint to find a more efficient
coding scheme for describing random walks? When we observe
a real-world network, we might end up with incomplete obser-
vations, such as missing links or incorrect link weights, meaning
that we cannot calculate the nodes’ visit rates accurately. How
does missing data affect the communities we find, and how can
we avoid detecting spurious communities? Moreover, commu-
nity detection is often not the end of the story: based on a net-
work’s community structure, what can we say about how central
a node is? And what links do we expect to see in the future?

24 through the coding-lens

Map Equation Assumptions

The map equation was originally designed for community de-
tection in unipartite networks, that is, networks where all nodes
have the same type and, in principle, any node can be con-
nected to any other node. Huffman code ensembles correspond
to network partitions, their codewords depend on the nodes’
visit rates, which in turn are defined by the network’s link pat-
terns. As such, a partition that we infer using the map equation
merely describes the observed link patterns, similar to how a de-
scriptive statistic summarises data. From the perspective of the
map equation, the available network data is all there is, whether
it is in fact complete or not. Therefore, we must always interpret
network partitions in the context of the data that we provided
as input.

Through the Coding-Lens

We can detect communities with the map equation even if the
assumptions are not satisfied, for example if our network is not
unipartite, or has missing data. Doing that simply means that
we pretend our network is unipartite and the data complete. We
would still learn something about the network’s structure, but
nuances may be lost, and the detected communities can be im-
precise. To understand what ignoring the assumptions means
exactly, we will look through the coding-lens using Huffman
codes. In paper I, we adapt the standard Huffman coding ap-
proach to capture the constraints that bipartite networks impose
on link patterns, and, by extension, on random walks. In pa-
per II, we assume incomplete network data and design a ran-
dom walker teleportation scheme that reflects this assumption
and allows us to estimate the true node visit and transition rates
more accurately. We use the coding-lens to show how missing
data affects the coding scheme, and how the new teleportation
scheme corrects it.

To move beyond community detection, we use the coding-
lens as well. While the original purpose of the map equation is
to describe network in terms of modules by summarising flow
patterns, we can use communities to figure out how important,

open questions 25

or central, specific nodes are. In paper III, we consider how
not assigning a codeword to a single node affects the codewords
assigned to other nodes. Assuming that leaving out more im-
portant nodes from the coding scheme affects the remaining
nodes’ codewords more, we derive a measure of node impor-
tance from the map equation. In paper IV, we use the fact that
a Huffman code ensemble can describe random walker transi-
tions along any link, even those that do not exist, to predict
what links we expect to see in the future. Following the idea
that random walker steps with a shorter description correspond
to more likely links, we use the coding-lens to derive a measure
for link prediction from the map equation.

In summary, the questions we discuss in the next part are:

I How do the link patterns in bipartite networks invalidate
the assumptions made by the map equation? How can we
reflect the constraints imposed by bipartite networks in the
coding scheme, and what nuances does this let us see?

II What effect does missing data have on the community struc-
ture that the map equation identifies? How can we adjust
for missing data and reduce the risk to detect spurious com-
munities?

III How are the codewords for the rest of the nodes affected
when we omit a node from the coding scheme, and how
can we use the map equation to determine how important
nodes are?

IV What does a network’s community structure tell us about
the likelihood that non-links25 will form in the future, and 25 A non-link is a link

that could, but does not
exist.

how can we use the map equation to predict links?

Part II

Community Detection
and Beyond

Bipartite Networks

There are usually a large number
of implied assumptions that are far
from obvious if you think about
them sufficiently carefully.

Richard Feynman

How do the link patterns in bipartite networks26 invalidate the 26 We will only con-
sider undirected bipar-
tite networks.

assumptions made by the map equation? Let us remember that,
in unipartite networks, links can in principle connect any two
nodes. Huffman codes naturally reflect this property in the
structure of their codebooks: within a codebook, any codeword
can, in principle, be used at any time. Consider the bipartite
network in Figure 18(a) with four left nodes, shown as circles,
and four right nodes, shown as squares.

(a)

a

b

c

d

1

2

3

4

(b)

1 011

2 000

3 111

4 001

a 100

b 110

c 101

d 010

(c)

100

201

311

410

a 00

b 11

c 01

d 10

Figure 18: (a) A bi-
partite network with
four left nodes, shown
as circles, and four
right nodes, shown as
squares. The bipartite
link pattern constrains
the random walker
to visit left and right
nodes in turn, never
the same type twice in
a row. (b) A coding
scheme that treats the
network as unipartite.
(c) A coding scheme
that distinguishes
between left and right
nodes.

30 through the coding-lens

A coding scheme that treats the network as unipartite27 also27 In this chapter, we use
the subscripts U and B
to distinguish between
unipartite and bipartite
coding schemes.

treats the codewords for left and right nodes the same, requiring

LU (M1) = H
(

2
18

,
2

18
,

3
18

,
2

18
right nodes

,
2
18

,
3

18
,

2
18

,
2
18

left nodes

)
≈ 2.97 bits (10)

per random-walker step (Figure 18(b)). However, a random
walker must visit left and right nodes in turn, never the same
type twice in a row, because of the bipartite link pattern. A
coding scheme that distinguishes between left and right nodes
by keeping track of the random walker’s current node type en-
ables re-using codewords across node types (Figure 18(c)), and
reduces the bipartite codelength to

LB (M1) =
1
2
· H

(
2
18

,
2

18
,

3
18

,
2
18

)
left to right

+
1
2
· H

(
2
18

,
3
18

,
2

18
,

2
18

)
right to left

≈ 1.97 bits. (11)

Whenever the random walker is at a left node, we use a code-
word from the left codebook which contains codewords for right
nodes, and vice-versa, following the random walk’s pattern of
alternating between left and right28.

28 Since links in bipar-
tite networks can only
connect nodes with dif-
ferent types, the total
degree of left nodes is
equal to the total degree
of right nodes, meaning
that we encode left-to-
right transitions half of
the time, and right-to-
left transitions the other
half.

Figure 19: (a) Two-level
partition of the bipar-
tite example network.
(b) A coding scheme
that treats the network
as unipartite, not dis-
tinguishing between left
and right nodes. (c) A
coding scheme that dis-
tinguishes between left
and right nodes. In
this specific case, there
are no codewords at the
index level because the
random walker cannot
choose between differ-
ent options.

(a)

a

b

c

d

1

2

3

4

(b)

A 0
B 1

1 101

2 00

a 01

b 11

exit 100

3 10

4 011

c 00

d 11

exit 010

(c)

B A

111

20

exit10

a 0

b 1

31

40

exit 10

c 11

d 0

bipartite networks 31

We can apply the same idea to two-level partitions. Split-
ting the network into its two fully connected compontents (Fig-
ure 19(a)) and treating it as if it was unipartite gives us a coding
scheme where each codebook treats the left and right nodes the
same (Figure 19(b)), with codelength

LU (M2) =
2

18
· H

(
1
2

,
1
2

)
index level

+
10
18
· H

(
2

10
,

3
10

,
2

10
,

2
10

,
1
10

)
blue module

+
10
18
· H

(
2

10
,

2
10

,
3
10

,
2

10
,

1
10

)
orange module

≈ 0.11 bits + 1.25 bits + 1.25 bits = 2.61 bits. (12)

By keeping track of the random walker’s current node type, we
separate left from right nodes in each module, reflecting how
the random walk alternates between left and right (Figure 19(c)),
and reducing the codelength to

LB (M2) =
1

18
· H (1)

left to right

+
1

18
· H (1)

right to left

index level

(13)

+
5

18
· H

(
2
5

,
2
5

,
1
5

)
left to right

+
5

18
· H

(
2
5

,
3
5

)
right to left

blue module

+
5

18
· H

(
3
5

,
2
5

)
left to right

+
5
5
· H

(
2
5

,
2
5

,
1
5

)
right to left

orange module

≈ 0 bits + 0 bits + 0.42 bits + 0.27 bits + 0.27 bits + 0.42 bits = 1.38 bits.

Or, alternatively, by commutativity and re-ordering the terms,
we may interpret the expression as two separate instances of the
map equation, one each for encoding left-to-right and right-to-
left transitions across the same partition29, 29 In thise case, the ex-

pression is quite sym-
metric because the net-
work is quite symmet-
ric. But this is not the
case in general.

LB (M2) =
1
18
· H (1)

index level

+
5
18
· H

(
2
5

,
2
5

,
1
5

)
blue module

+
5
18
· H

(
3
5

,
2
5

)
orange module

left to right

(14)

+
1

18
· H (1)

index level

+
5

18
· H

(
2
5

,
3
5

)
blue module

+
5

18
· H

(
2
5

,
2
5

,
1
5

)
orange module

right to left

.

32 through the coding-lens

However, reducing the codelength comes at a cost. To use a
bipartite coding scheme, sender and receiver need to keep track
of the random walker’s current node type and remember 1 bit of
information. It turns out that this 1 bit is exactly the amount by
which we can, and have reduced the codelength in the one-level
case (Equation (10) vs. Equation (11)). Similarly, in the two-level
case, the entropies at module level in all modules are reduced
by 1 bit (Equation (12) vs. Equation (13)). However, in the two-
level case, this is less obvious because the reduced entropies are
multiplied with the codebook usage rates, resulting in an overall
codelength reduction of more than 1 bit [1].

The Bipartite Map Equation

As we have seen, we can reflect the constraints imposed by bi-
partite networks in the coding scheme through keeping track of
the random walker’s current node type. We make use of more
available information, and reduce the codelength.

For a more principled derivation of a bipartite map equa-
tion, we assume that G = (L, R, E) is an unweighted and undi-
rected bipartite graph30 with left nodes L, right nodes R, and30 The derivation would

also work with weights,
but is clearer without.

edges E ⊆ L × R, and consider two random processes. Let us
call the first process X : current node, and assume that X yields
a sequence of nodes from L ∪ R according to a random walk
on G. For the one-level partition M1 and treating the network
as unipartite, the map equation describes X ’s entropy, that is
H (X) = LU (M1). The second process is Y : current node type,
and corresponds to the random walker’s current node’s type.
We know that, in bipartite networks, random walks alternate
between left and right nodes so that Y generates the sequence
l, r, l, r, l, r, . . ., and has an entropy of H (Y) = 1 bit31.31 One may be tempted

to argue that H (Y) is
0 bits because know-
ing Y ’s current state
makes it possible to pre-
dict all of Y ’s future
states correctly. But this
only works if Y ’s cur-
rent state was actually
known, an information
that is worth 1 bit.

We can define two more processes: Y|X : current node type,
given current node, and X |Y : current node, given current node type.
The third process, namely Y|X , is relatively boring because, if
we know the current node, then we also know the current node
type, that is H (Y|X) = 0 bits. The fourth process, X |Y , is more
interesting and corresponds to describing a random walk on a
bipartite network with a bipartite coding scheme, and we define

bipartite networks 33

H (X |Y) = LB (M1). Using Bayes’ rule for conditional entropy,
we relate the four processes to each other,

H (X |Y) = H (X)−H (Y) +H (Y|X) . (15)

To construct a bipartite coding scheme, we consider the nodes’
visit rates separately; let PL and PR be the sets of visit rates for
left and right nodes, respectively32. Since the random walker 32 For ergodic visit rates

in bipartite graphs, we
consider averages over
two random walker
steps, that is, the visit
rates we would obtain
assuming a unipartite
network [1].

moves from left to right nodes half of the time, and from right
to left nodes the other half, we have

H (X |Y) = 1
2
· H

(
PR
)
+

1
2
· H

(
PL
)

. (16)

We relate the one-level bipartite codelength to the one-level uni-
partite codelength by putting Equation (15) and Equation (16)
together,

LU (M1) = H (P)
H(X)

= 1 bit
H(Y)

+
1
2
· H

(
PR
)
+

1
2
· H

(
PL
)

H(X |Y)

= 1 bit + LB (M1) . (17)

And, finally, we plug Equation (17) into the two-level unipar-
tite map equation, replacing the unipartite index and module
codebooks with a bipartite version,

LU (M) = q
(

1 bit +
1
2
· H

(
QR
)
+

1
2
· H

(
QL
))

+ ∑
m∈M

pm

(
1 bit +

1
2
· H

(
PR
m

)
+

1
2
· H

(
PL
m

))
, (18)

where M is a two-level partition; QR =
{

qR
m

∣∣m ∈ M
}

is the set
of left-to-right, and QL =

{
qL
m

∣∣m ∈ M
}

the set of right-to-left

module entry rates; and PR
m =

{
qR
m,exit

}
∪ {pu | u ∈ m∩ R} is

the set of left-to-right, and PL
m =

{
qL
m,exit

}
∪ {pu | u ∈ m∩ L} the

set of right-to-left node visit rates, both including module exits.
Equation (18) makes it clear that a bipartite coding scheme saves
more than 1 bit compared to a unipartite coding scheme33.

33 This is because the
overall coding rate at
which we save 1 bit is
bigger than one in two-
level partitions.

Separating the left and right parts, and dropping H (Y), we
define the bipartite map equation,

LB (M) = qR · H
(

QR
)
+ ∑

m∈M
pR
m · H

(
PR
m

)
+ qL · H

(
QL
)
+ ∑

m∈M
pL
m · H

(
PL
m

)
, (19)

34 through the coding-lens

where qR = ∑m∈M qR
m and qL = ∑m∈M qL

m are the left-to-right
and right-to-left index-level codebook usage rates, respectively;
and pR

m = ∑u∈m∩R pu and pL
m = ∑u∈m∩L pu are the left-to-

right and right-to-left module-level codebook usage rates, re-
spectively.

Varying Node-Type Memory

With the bipartite map equation, we can encode random walks
on bipartite networks more efficiently through remembering the
random walker’s current node type and alternating between
left-to-right and right-to-left codebooks. But compression is not
the ultimate goal. Instead, we want to learn something about
the network’s structure, and we consider those nodes that share
codebooks and compress more efficiently together as belong-
ing together [71]. However, in sparse regions of bipartite net-
works, remembering the node type comes close to remembering
the actual node, preventing us from identifying modular struc-
ture [1]. The problem is that, from a compression perspective, it
becomes attractive to create many small modules because they
increase the coding rate, leading to more codelength savings
(Equation (18)). To avoid this, we will use node-type information
at intermediate rates.

We start by changing our interpretation of node flow and rep-
resent it as pairs in bipartite networks. Left nodes have all their
flow on the left while right nodes have it on the right. A left
node u with unipartite flow pu has bipartite flow pB,u = (pu, 0),
and a right node v with unipartite flow pv has bipartite flow
pB,v = (0, pv). Essentially, depending on the node’s type, we
push its flow to the left or right. This model also suggests an-
other interpretation of flow in bipartite networks when we treat
them as if they were unipartite: half of the flow is on the left,
and the other half on the right, pB,w =

(pw
2 , pw

2
)
, regardless of

whether w is a left or right node, reflecting that we ignore node
types. To move gradually from treating a network as unipartite
to treating it as bipartite, we push only part of the flow towards
the nodes’ type. While nodes have a true type, left or right, we
assume that we cannot remember them reliably: we remember

bipartite networks 35

the correct type with probability 1− α, but make a mistake with
probability α, on average leading to what we call mixed visit
rates34. A left node u with unipartite visit rate pu has a mixed 34 We assume that we

make those mistakes
uniformly, independent
from nodes and types.

visit rate pα,u = ((1− α) pu, αpu), and a right node v with uni-
partite visit rate pv has a mixed visit rate pα,v = (αpv, (1− α) pv).

With mixed visit rates, the entropy of Y|X : current node type,
given current node changes because we expect to make a mistake
with probability α, leading to H (Y|X) = Hα = H (1− α, α).
The entropy of Y : current node type remains unchanged and is
1 bit because we still observe left and right nodes with probabil-
ity 1

2 each. We use Bayes’ rule again to define a bipartite map
equation with varying node-type memory α and relate it to the
unipartite map equation. For a one-level partition M1, we get

LU (M1) = H (P)
H(X)

= 1 bit
H(Y)

− Hα

H(Y|X)

+ H (Pα)

H(X |Y)

= 1 bit−Hα + Lα (M1) , (20)

where Pα are the nodes’ mixed visit rates, and H (Pα) is short-
hand for the total component-wise entropies of the mixed node
visit rates. What Equation (20) says is that we reduce the code-
length by 1 bit by knowing the nodes’ types, but by making
mistakes about the types, we increase it by Hα. Plugging Equa-
tion (20) into the two-level unipartite map equation, we get

LU (M) = q (1 bit−Hα +H (Qα))

+ ∑
m∈M

pm (1 bit−Hα +H (Pα,m)) . (21)

Simplifying the notation and dropping the 1 bit−Hα parts, we
define the bipartite map equation with varying node type mem-
ory,

Lα (M) = qα · H (Qα) + ∑
m∈M

pα,m · H (Pα,m) , (22)

where qα and pα,m are the mixed index-level and module-level
codebook usage rates, Qα is the set of mixed module entry rates,
and Pα,m is the set of mixed node visit rates in module m, in-
cluding the pair of module exit rates. For α = 1

2 , we recover the
unipartite map equation from Equation (22), and for α ∈ {0, 1},
we recover the bipartite map equation35.

35 α = 0 means we never
make mistakes and al-
ways get the correct
node types, and α = 1
means we always make
mistakes and never get
the correct node types,
but L0 (M) = L1 (M).Setting α ∈

{
1
2 , 1

4 , 0
}

to encode the partition from Figure 20(a),

36 through the coding-lens

we gradually move from ignoring node types, LU (M2) =

L 1
2
(M2) ≈ 2.61 bits, through partially using node types,

L 1
4
(M2) =

(
1

18
,

1
18

)
· H
((

3
4

,
1
4

)
blue

,
(

1
4

,
3
4

)
orange

)

index level

+

(
5
18

,
5

18

)
· H
((

6
20

,
2

20

)
a

,
(

9
20

,
3

20

)
b

,
(

2
20

,
6

20

)
1

,
(

2
20

,
6
20

)
2

,
(

1
20

,
3

20

)
exit

)

blue module

+

(
5
18

,
5

18

)
· H
((

6
20

,
2

20

)
c

,
(

6
20

,
2

20

)
d

,
(

3
20

,
9

20

)
3

,
(

2
20

,
6
20

)
4

,
(

3
20

,
1

20

)
exit

)

orange module

≈ (0.05, 0.05) bits + (0.53, 0.61) bits + (0.61, 0.35) bits

= (1.19, 1.19) bits = 2.38 bits, (23)

to fully using node types, LB (M2) = L0 (M2) = 1.38 bits (Fig-
ure 20(b-d)). The struck-out codewords in Figure 20(c) are parts
of the codes, but never actually used because they would de-
scribe transitions between same-type nodes that cannot happen.

(a)

a

b

c

d

1

2

3

4

(b)

A 0
B 1

1 101

2 00

a 01

b 11

exit 100

3 10

4 011

c 00

d 11

exit 010

(c)

1
B0 A 0

1

a010
b011

110

211
exit00

a 11

b 0
1 1011
2 100

1010

1010
c1011
d100

30

411

exit 00
c 10

d 11
3 011
4 010

(d)

B A

111

20

exit10

a 0

b 1

31

40

exit 10

c 11

d 0

Figure 20:
(a) The bipartite exam-
ple network and coding
schemes for (b) α = 1

2 ,
(c) α = 1

4 , and (d) α = 0.

bipartite networks 37

Higher Resolution with more Node-Type Information

The bipartite map equation with varying node-type memory in-
creases the resolution as we use more node-type information,
and reveals communities at different scales [1]. For example,
consider the weighted Fonseca-Ganade plant-ant web [23], a bi-
partite network where round nodes represent ant species, and
square nodes represent plant species. Ant species are connected
to those plant species which they use as a food source or for
housing. With more certainty about node types, we detect com-
munities at different scales, both coarser and finer (Figure 21).

(a) (b)
Figure 21: A food web
where round nodes rep-
resent ant species, and
square nodes represent
plant species. A link be-
tween an ant and plant
species means that the
ant species uses the
plant species as a food
source or for housing.
Link weights are shown
by their thickness. We
show the detected com-
munities for (a) α = 1

2 ,
and (b) α = 1

6 .To understand how the landscape of detected communities
changes as we use more node-type information, we have im-
plemented the bipartite map equation with varying node type
memory in Infomap, and used it to detect communities in real-
world bipartite networks, scanning from α = 1

2 to α = 0. But
because it is more intuitive to think about how much we know
about node types rather than the probability of mis-remembering
them, we use entropy to connect these two quantities and talk
about the amount of node-type information that is available.
Mis-remembering node types with probability α means that we
have an uncertainty of Hα, and, consequently, the amount of
available information about node types is 1−Hα. This connects
well to the theory we have developed because, in one-level parti-
tions, the available node-type information is exactly the amount
by which we reduce the codelength as compared to the standard
map equation.

We consider four36 networks: the Fonseca-Ganade ant-plant

36 Paper I contains re-
sults for another 17 net-
works [1].

38 through the coding-lens

Table 5: Sizes of four
real-world bipartite net-
works where |L| is the
number of left nodes,
|R| the number of right
nodes, and |E| the num-
ber of links.

Name |L| |R| |E|
Fonseca-Ganade ant-plant 19 10 38
LVHK Meetup attendance 6,061 5,096 127,033
IMDb actor-movie 124,414 374,511 1,460,791
Last.fm user-song 992 1,084,620 4,413,834

web [23], the Las Vegas Hikers (LVHK) Meetup attendance net-
work [74], an Internet Movie Database (IMDb) actor-movie net-
work [41], and a Laft.fm user-song network [41] with sizes as
listed in Table 5.

We use Infomap to detect two-level as well as hierarchical
partitions for node-type information from 0 bits to 1 bit, and
measure the extra compression as the codelength reduction com-
pared to the one-level partition. The extra compression is always
at least 0 bits because Infomap returns the one-level partition if
it cannot find a modular partition with lower codelength. To
quantify the achieved resolution, we calculate the effective mod-
ule size as the perplexity over the relative sizes of the detected
modules: let S be the set of leaf module37 sizes, where size

37 Leaf modules are
those modules that con-
tain no sub-modules.
For example in two-
level partitions, the
index-level module
contains sub-modules
and, therefore, is no
leaf module.

refers to the number of nodes in a module. The perplexity of
S, that is 2H(S), with H (S) = −∑s∈S

s
N log2

s
N , describes the ef-

fective number of leaf modules, similar to how the perplexity
of a (loaded) coin’s probability distribution for heads and tails
describes the coin’s effective number of sides38. To calculate the38 A fair coin that turns

up heads or tails each
with probability 1

2 has

effectively 2H(
1
2 , 1

2) = 2
sides. But a coin that
always turns up heads
only has 2H(1,0) = 1
side. In general, a
coin that turns up heads
with probability α has
2Hα sides.

effective number of modules, we divide the number of nodes by
the perplexity, N

2H(S) .
Our results show that the extra compression that we achieve

with the bipartite map equation with varying node-type mem-
ory goes beyond the amount of available node-type information.
Similarly, with more node-type information, modules tend to get
smaller, or, in other words, the community structure’s resolution
increases. When we get close to using full node-type informa-
tion, the effective module size tends towards one, and we detect
many small modules. Again, we can explain this with an in-
centive to increase the coding rate: we can reduce each module
codelength by the amount of available node-type information,
which is then multiplied with the module’s codebook usage rate.

bipartite networks 39

Increasing the overall coding rate increases the rate at which the
compression benefits from the available node-type information.
However, as the leaf modules become smaller, the community
hierarchy becomes deeper such that higher levels still contain
significant structures (Figure 22).

(a)

2

3

4

5

E
ffe

ct
iv

e
m

od
ul

e
si

ze

0.00 0.25 0.50 0.75 1.00
Available information (bits)

1.65

1.70

1.75

1.80

E
xt

ra
co

m
pr

es
si

on
(b

its
)

(b)

101

102

103

E
ffe

ct
iv

e
m

od
ul

e
si

ze

0.00 0.25 0.50 0.75 1.00
Available information (bits)

0.7

0.8

0.9

1.0

1.1

E
xt

ra
co

m
pr

es
si

on
(b

its
)

(c)

0

20

40

60

80

100

E
ffe

ct
iv

e
m

od
ul

e
si

ze

0.00 0.25 0.50 0.75 1.00
Available information (bits)

5.0

5.5

6.0

E
xt

ra
co

m
pr

es
si

on
(b

its
)

(d)

102

103

E
ffe

ct
iv

e
m

od
ul

e
si

ze

0.00 0.25 0.50 0.75 1.00
Available information (bits)

2.0

2.1

2.2

2.3

E
xt

ra
co

m
pr

es
si

on
(b

its
)

hierarchical
two-level
hierarchical
two-level

Figure 22: Properties
of the community land-
scape in four bipartite
networks. (a) Fonseca-
Ganade ant-plant web.
(b) Las Vegas Hikers
Meetup attendance. (c)
IMDb actor-movie net-
work. (d) Last.fm user-
song network.

Future Directions

The bipartite map equation with varying node-type memory is
just one of many possible ways to generalise the standard map
equation. With a similar approach, we could define a map equa-
tion for multipartite networks, that is, networks with more than
two types of nodes where links follow some pattern in how they
connect different-type nodes. For example, one could model
bipartite customer-product purchase networks in a more fine-
granular fashion by splitting products into categories such as
movies, books, beverages, etc., and representing each category

40 through the coding-lens

with a different node type. Clearly, bipartite networks are a spe-
cial case of multipartite networks with only two node types.

Another possible generalisation would be to consider par-
tially bipartite networks where nodes could assume types on
a continuous scale between left and right. Links could then in
principle connect any two nodes, but may be more likely be-
tween more dissimilar nodes. For example, in network mod-
els of markets, the producers, traders, and consumers could be
placed on a scale from left to right, or seller to buyer, depend-
ing on their respective volumes of business transactions where
they assume roles as sellers or buyers. Bipartite networks are
a special case of partially bipartite networks where each nodes
assumes exactly one role, either left or right.

Since we have derived the bipartite map equation from the
standard map equation, we ended up with a co-clustering of left
an right nodes. However, one could de-couple the codebooks
for left-to-right and right-to-left transitions to allow for different
communities amongst left and right nodes.

Incomplete Data

We have to remember that what
we observe is not nature herself,
but nature exposed to our
method of questioning.

Werner Heisenberg

What effect does missing data have on the community structure
that the map equation identifies? Let us explore this question39 39 We now leave the bi-

partite map equation
behind and return to
using unipartite coding
schemes.

using a weighted toy network with seven nodes and ten links
(Figure 23). We assume that the network is complete as shown,
that is, no data is missing, and denote it by G•. Infomap parti-
tions the network into two modules, M2 = {{1, 2, 3} , {4, 5, 6, 7}},

(a)

2

26

3

3

3

2

3

1

2

1

2

3

4 5

6

7

A0 1.0 00 3.12
B1 1.0 110 3.501 1.89

10 1.7

11 1.7

00 2.09 111 2.28

01 2.09

10 2.09

(b)

A 0
B 1

1 01

2 10

3 11

exit 00

4 00

5 111

6 01

7 10

exit 110

Figure 23: (a) A toy net-
work with seven nodes
and ten links where link
weights are shown next
to the links, and code-
words and their theoret-
ical length in bits are
shown next to the nodes
in coloured text and in
black, respectively. We
assume that the link
data shown here is com-
plete. (b) The cod-
ing scheme for the high-
lighted partition.

42 through the coding-lens

and the codelength for this partition is

L (G•,M2) =
6
54
· H

(
3
6

,
3
6

)
index level

+
26
54
· H

(
7

26
,

8
26

,
8

26
,

3
26

)
blue module

+
34
54
· H

(
8
34

,
7

34
,

8
34

,
8
34

,
3

34

)
orange module

≈ 0.11 bits + 0.92 bits + 1.42 bits = 2.45 bits, (24)

But what if some data was missing, for example because the
network models a real-world system that is difficult to observe
in its entirety? Let us assume that we have incomplete observa-
tions for four of the links (Figure 24), and denote the resulting
network as G◦. In the new, incomplete network G◦, the code-
length for M2 is

L (G◦,M2) =
6
46
· H

(
3
6

,
3
6

)
index level

+
24
46
· H

(
6

24
,

7
24

,
8

24
,

3
24

)
blue module

+
28
46
· H

(
7
28

,
6

28
,

7
28

,
5
28

,
3

28

)
orange module

≈ 0.13 bits + 1 bit + 1.38 bits = 2.51 bits. (25)

Figure 24: (a) The same
network as in Figure 23,
but now with incom-
plete observations: the
link labels indicate the
amount of missing ob-
servations; links with-
out labels have the same
weights as before. (b)
A new coding scheme
with new codewords
for the old partition.

(a)

-1

-1
-1

-1

1

2

3

4 5

6

7

A0 1.0 00 3.0
B1 1.0 110 3.2201 2.0

10 1.78

11 1.58

01 2.0 00 2.22

10 2.0

111 2.49

(b)

A 0
B 1

1 01

2 10

3 11

exit 00

4 01

5 00

6 10

7 111

exit 110

We begin to wonder whether M2 describes G◦ best — it does
not. Consider the partition M3 = {{2, 3} , {4, 5, 6} , {1, 7}} with

incomplete data 43

three modules instead of two (Figure 25), and a lower codelength
in G◦ than M2,

L (G◦,M3) =
10
46
· H

(
3

10
,

2
10

,
5
10

)
index level

+
18
46
· H

(
7
18

,
8

18
,

3
18

)
blue module

+
22
46
· H

(
7
22

,
6

22
,

7
22

,
2
22

)
orange module

+
16
46
· H

(
6

16
,

5
16

,
5
16

)
yellow module

≈ 0.32 bits + 0.58 bits + 0.9 bits + 0.55 bits = 2.35 bits, (26)

(a)

1

2

1

16

3

3

3

3

2

3

4 5

6

1

7

A01 1.74 10 2.58
B00 2.32 00 3.46
C1 1.0 11 1.68

11 1.36

0 1.17

10 1.65 01 1.87

11 1.65

0 1.42

10 1.68

(b)

A01
B00

C1

2 11

3 0

exit 10

4 10

5 01

6 11

exit 00

1 0

7 10

exit 11

Figure 25: (a) The toy
network with incom-
plete data, showing a
three-module partition
with lower codelength
than the two-module
partition which was op-
timal under complete
data. The link weights
correspond to the origi-
nal weights (Figure 23)
minus the missing ob-
servations (Figure 24).
(b) The coding scheme
for the three-module
partition.

In G•, however, M3 has a higher codelength than M2,

L (G•,M3) =
18
54
· H

(
4

18
,

5
18

,
9
18

)
index level

+
20
54
· H

(
8
20

,
8

20
,

4
20

)
blue module

+
28
54
· H

(
8
28

,
7

28
,

8
28

,
5
28

)
orange module

+
24
54
· H

(
7

24
,

8
24

,
9
24

)
yellow module

≈ 0.5 bits + 0.56 bits + 1.02 bits + 0.7 bits = 2.78 bits, (27)

44 through the coding-lens

so that we would not detect M3 in G•.
The toy example illustrates what happens when data is in-

complete: the network gets fragmented into more and smaller
communities because we cannot calculate the nodes’ visit rates
accurately, and module entry and exit rates get distorted [2].
Partitions that would be sub-optimal under complete data can
achieve a lower codelength than the network’s true community
structure40. However, we would like to detect the true commu-40 Assuming that there

is such a thing as a true
community structure.

nity structure even when data is missing, or at least a partition
that is as close as possible to the network’s true structure. The
fundamental reason why this does not work out-of-the box is
that the map equation describes the provided network as-is, im-
plicitly assuming that the data is complete [2].

Updating our Assumptions

When modelling a real-world system, we should ask ourselves
whether it is reasonable to assume complete data. Often, this
is not the case. We rely on observations to derive link weights,
but it may be prohibitively expensive or time-consuming to en-
sure complete data so that, instead, we collect a “good enough”
sample41. Even networks that seem to be complete from one41 What “good enough”

means depends on the
research question and is
impossible to quantify
in general.

point of view can be incomplete from another. For example, one
could argue that online social networks are complete because all
friendship relations between their users can be retrieved from
a database. However, not all users who are real-life friends are
necessarily connected online; some links that should exist are
missing. On the other hand, acquaintances who do not consider
each other friends in real life may be friends online; we observe
some links that should not be there. We can think about links
that should exist, but do not, as false negatives, and links that
should not exist, but do, as false positives, obtained through an
imprecise measuring instrument.

In this chapter, we interpret networks as directed42 multi-42 For simplicity, we use
undirected networks in
the examples.

graphs where link weights represent the number of times we
have observed each link. We assume that observed link weights
can be smaller than or equal to their true values, that is, we can
have false negatives, but no false positives. However, observing

incomplete data 45

a lower weight for a link (u, v) means that we underestimate
the rate tu,v at which a random walker transitions from u to v,
which can lead to overestimating the transition rates between
other node pairs. To avoid this, we regularise the map equa-
tion with an empirical Bayes estimate of the transition rates. We
adapt the so-called continuous configuration model [60] to cal-
culate prior link weights based on the observed link weights,
and combine those weights with a fully-connected network for
teleportation, corresponding to an average over the ensemble of
Erdős-Rényi random networks [22], representing our expecta-
tion so see uniformly distributed links in absence of data. The
probability to teleport through the prior network depends both
on the random walker’s current node and its target node: tele-
porting from nodes with more observations is less likely, while
choosing target nodes with more observations is more likely, re-
flecting the idea that more data gives us higher confidence in the
observed link weights. When the community structure in the ob-
served part of the data stands out clearly enough compared to
the fully connected prior, we hope to detect the true community
structure. If it does not, the prior should prevent the map equa-
tion from detecting modular structure and, instead, return the
one-level partition.

Teleportation to the Rescue

In directed networks, we need to work with teleportation to
guarantee ergodic transition rates between nodes, and one of
the simplest approaches to do so is uniform node teleportation.

(1-α) ·

1

2

3

6

3

3

1

3

1

1

2

3

4 5

6

7

+ α ·

1

2

3

4 5

6

7

=

1

1.85

2.7

5.25

2.7

2.7

1

2.7

1

1

2

3

4 5

6

7

Figure 26: An attempt
to address incomplete
data with uniform node
teleportation: the ran-
dom walker follows ob-
served links with prob-
ability 1 − α (left), and
teleports with probabil-
ity α to a node cho-
sen uniformly at ran-
dom (middle). In
the combined network
(right), M3 still has a
lower codelength than
M2. Links in the mid-
dle have weight 1, and
unlabelled links on the
right weight α = 0.15.

46 through the coding-lens

Using uniform node teleportation, the random walker teleports
with fixed probability α to a node chosen uniformly at random,
and follows observed links with probability 1− α at every step
[31]. We combine the example network with incomplete obser-
vations with a uniform node teleportation approach (Figure 26),
and check the resulting codelengths for M2 and M3. For uni-
form node teleportation with teleportation rate α, we denote the
codelength as Lα∗, use decimal numerals in the fractions for clar-
ity, and do not explicitly normalise the inputs to the entropy
function43. For α = 0.15, the two-module partition M2 has code-

43 In this chapter, we
adopt the convention
that the inputs to the
entropy function are
implicitly normalised
by their sum, inter-
preting H (x, y) as

H
(

x
x+y , y

x+y

)
length

L0.15
∗ (G◦,M2) =

8.7
45.4
· H (4.35, 4.35)

index level

+
24.9
45.4
· H (6, 6.85, 7.7, 4.35)

blue module

+
29.2
45.4
· H (6.85, 6, 6.85, 5.15, 4.35)

orange module

≈ 2.75 bits, (28)

and the three-module partition M3 has codelength

L0.15
∗ (G◦,M3) ≈ 0.29 · H (3.9, 3.5, 5.75)

index level

+ 0.41 · H (6.85, 7.7, 3.9)
blue module

+ 0.51 · H (6.85, 6, 6.85, 3.5)
orange module

+ 0.37 · H (6, 5.15, 5.75)
yellow module

≈ 2.65 bits, (29)

so we prefer M3 over M2 as a description of the network’s struc-
ture. In our example, uniform node teleportation could not com-
pensate for the incomplete data. In general, for low teleportation
rates, the observed network structure dominates over the tele-
portation such that the map equation can overfit to the noise.
Conversely, for high teleportation rates, random teleportation
jumps dominate over the observed network structure, and the
map equation can underfit without detecting relevant commu-
nity structure [2].

Therefore, instead of adopting a uniform teleportation scheme,
we take a different approach and use the observed data to de-

incomplete data 47

rive a prior teleportation network and node-dependent telepor-
tation rates αu. Essentially, every piece of observed data pro-
vides more information and enables us to make a better choice
when it comes to the prior network and teleportation rates. We
calculate the link weights in the prior network as44 44 For now, we simply

state our solution and
delay explaning where
it comes from until the
next section.

γu,v = λu,v · ∑n∈V kin
n + kout

n

∑n∈V sin
n + sout

n
· sout

u sin
v

kout
u kin

v
, (30)

where λu,v is a connectivity parameter, kin
u and kout

u are node
u’s in and out degrees, and sin

u = ∑v∈V wv,u is node u’s in-
strength, and sout

u = ∑v∈V wu,v is node u’s out-strength, respec-
tively. We choose λu,v = ln|V|

|V| , which corresponds to the con-
nectivity threshold of random networks [22], that is, a network
where each link exists independently with uniform probability
ln|V|
|V| is almost surely connected. The node-dependent teleporta-

tion rates are
αu =

∑v∈V γu,v

∑v∈V wu,v + γu,v
, (31)

that is, the random walker follows links in the observed and
prior network proportional to the current node’s observed and
prior out-strength, respectively. Based on Equation (30) and
Equation (31), we construct a prior network for the example net-
work and use node-dependent teleportation rates (Figure 27).

1

2

3

6

3

3

1

3

1

1

2

3

4 5

6

7

+

1

2

3

4 5

6

7

=

3.361.76

2.877.52

3.76

3.59

1.42

3.76

1.42

1

2

3

4 5

6

7

Figure 27: With a node-
dependent teleportation
scheme, we recover M2
as a better description
than M3.

We denote the codelength under node-dependent teleportation
as Lγ. With node-dependent teleportation, the two-module par-
tition M2 has codelength

48 through the coding-lens

Lγ (G◦,M2) ≈
25.28
78.61

· H (12.64, 12.64)

index level

+
49.59
78.61

· H (9.66, 12.84, 14.45, 12.64)

blue module

+
54.3
78.61

· H (11.19, 11.17, 11.19, 8.11, 12.64)

orange module

≈ 3.17 bits, (32)

and the three-module partition M3 has codelength

Lγ (G◦,M3) ≈
34.61
78.61

· H (12.25, 11.31, 11.05)

index level

+
39.54
78.61

· H (12.84, 14.45, 12.25)

blue module

+
44.86
78.61

· H (11.19, 11.17, 11.19, 11.31)

orange module

+
28.82
78.61

· H (9.66, 8.11, 11.05)

yellow module

≈ 3.2 bits, (33)

such that we recover M2 as a better description of the network’s
structure than M3.

Teleporting with Empirical Bayes

For a principled derivation of the regularised node transition
rates, we adopt a Bayesian approach [2, 86]. Let Tu = [tu,v]v∈V
be the hidden vector of true transition probabilities from node
u to nodes v ∈ V. Our goal is to determine Tu to address the
incomplete observations problem. The observed weights vector
Wu = [wu,v]v∈V can be understood as a sample from Tu.

We introduce a prior distribution over Tu to calculate an esti-
mate of the true transition rates,

t̂u,v =
∫

tu,vP (Tu|Wu) dTu. (34)

P (Tu|Wu) is the posterior of the unknown distribution over Tu,
given the observed weights Wu, defined by Bayes’ rule as

P (Tu|Wu) =
P (Wu|Tu) P (Tu)

P (Wu)
. (35)

incomplete data 49

We choose a Dirichlet prior for Tu,

P (Tu|γu) =
Γ (∑v∈V γu,v)

∏v∈V Γ (γu,v)
∏
v∈V

tγu,v−1
u,v , (36)

where Γ is the gamma function, and γu,v are distribution param-
eters. Given Tu, the likelihood of the observed data Wu is

P (Wu|Tu) =

(
∑

v∈V
wu,v

)
! ∏

v∈V

twu,v
u,v

wu,v!
, (37)

and the total probability of the data is

P (Wu) =
∫

P (Wu|Tu) P (Tu) dTu. (38)

The posterior of Tu, given the observed data Wu and parameters
γu,v is

P (Tu|Wu, γu) ∝ ∏
v∈V

twu,v+γu,v−1
u,v . (39)

After plugging Equations (37) to (39) into Equation (35), we can
integrate Equation (34), and get

t̂u,v =
wu,v + γu,v

∑v∈V wu,v + γu,v

= (1− αu)
wu,v

∑v∈V wu,v
+ αu

γu,v

∑v∈V γu,v
, (40)

where we interpret

αu =
∑v∈V γu,v

∑v∈V wu,v + γu,v
(41)

as node-dependent teleportation probabilities. The random walk-
er follows links in the observed network with probability 1− αu,
and links in the prior network with probability α; teleportation
probabilities depend both on the source and target node.

We define the parameters γu,v as

γu,v = λu,v · cu,v, (42)

where λu,v is a connectivity parameter, and cu,v reflects our prior
belief about the links’ weights. In unipartite networks, we choose
a uniform connectivity parameter λu,v = λ = ln|V|

|V| , which is the
threshold at which Erdős-Rényi random networks are almost

50 through the coding-lens

surely connected [22]. To calculate expected link weights, we
use the so-called continuous configuration model [60],

cu,v =
∑n∈V kin

n + kout
n

∑n∈V sin
n + sout

n
· sout

u sin
v

kout
u kin

v
, (43)

where kin
u and kout

u are node u’s in and out degrees, and sin
u and

sout
u are node u’s in and out strengths, respectively. In case of

undirected networks, we have kin
u = kout

u and sin
u = sout

u for all u.
Equation (43) preserves the expected weights of in- and out-links
incident to a node, and places higher weights between pairs of
nodes with stronger connections.

Connectivity in Bipartite and Metadata Networks

Node types in bipartite networks45 and metadata labels in node-

45 As a brief reminder,
bipartite networks have
two sets of nodes that
we called L and R. annotated networks46 provide information that we can use to

46 Metadata for nodes
that represent persons
could be, for example,
age, place of birth, citi-
zenship, . . .

adjust the connectivity parameter λu,v.
Following the constraint that only different-type nodes in bi-

partite networks can be connected, we choose the connectivity

λLR =
ln (|L|+ |R|)
min (|L| , |R|) , (44)

which is the threshold at which random bipartite networks are
almost surely connected [69], and set

γbi
u,v = (1− δτu ,τv) λLRcu,v, (45)

where δ is the Kronecker delta, and τu and τv are the types – left
or right – of nodes u and v, respectively.

In unipartite networks with metadata, we assume that nodes
follow the homophily principle [51] and prefer to connect with
other nodes belonging to the same metadata class. As before,
we connect each pair of nodes uniformly with connectivity λ =
ln|V|
|V| , but, in addition, reinforce the connectivity between nodes

with the same label m by λm = ln nm
nm

, where nm is the number
of nodes labelled with m. With metadata labels mu and mv for
nodes u and v, we adjust the prior link weight to

γmeta
u,v = (λ + δmu ,mv λmu) cu,v. (46)

incomplete data 51

Modelling Incomplete Data Prevents Overfitting

We can compensate for small to moderate47 amounts of missing 47 How much missing
data we can handle de-
pends on the specifics
of the network and how
many link observations
are left to work with.

data with the regularised map equation and still detect commu-
nities that describe the network’s structure well. When large
amounts of data are missing such that there is not enough ev-
idence to support communities, the regularised map equation
returns the one-level partition.

We compare how the standard and regularised map equation
behave under incomplete observations by applying them to a
synthetic and empirical networks where we randomly remove
different r-fractions of the data. For each r, we measure how
many modules each version of the map equation detects, and
how well the partitions characterise the networks’ community
structure.

(a)

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0

20

40

60

N
um
be
r
of
co
m
m
un
iti
es

Standard

Regularised

(b)

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0.0

0.2

0.4

0.6

0.8

1.0

A
M
I

Standard

Regularised

Figure 28: With the reg-
ularised map equation,
we compensate for in-
complete observations
up to a point where
70% of the data in an
LFR network is missing.
The results are averages
over 100 samples.

In a synthetic Lancichinetti-Fortunato-Radicchi (LFR) network
with 1000 nodes, average node degree 7, mixing parameter48 48 Mixing quantifies the

fraction of links that
connect nodes in differ-
ent modules. For ex-
ample, a mixing of 0.1
means that 10% of the
links connect nodes in
different module, and
90% connect nodes in
the same module.

0.4, and known community structure with 31 modules, the reg-
ularised map equation compensates up to a point where 70% of
the data is missing (Figure 28). It detects the correct number
of 31 communities up to approximately r = 0.7, and returns the
one-level partitions beyond that. The standard map equation be-
gins to detect more than 31 communities already around r = 0.5
(Figure 28(a)).

Since we know the planted community structure, we can use
adjusted mutual information (AMI) [84] to measure how well

52 through the coding-lens

the detected communities align with the ground truth: the AMI
score for the standard map equation continues to decrease as r
increases, whereas it remains stable close to 1 for the regularised
map equation up to around r = 0.7. While the standard map
equation may detect the correct number of modules, it assigns
some nodes to the wrong module; the regularised map equation
corrects this problem (Figure 28(b)).

Figure 29: With cor-
rect metadata labels, the
regularised map equa-
tion avoids overfitting
even for large amounts
of missing data. For
large amounts of miss-
ing data and misla-
belled nodes, it return
the one-level partition.

(a)

N
um
be
r
of
co
m
m
un
iti
es

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0

10

20

30
µ = 0.0

µ = 0.15

µ = 0.5

(b)

A
M
I

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0.0

0.2

0.4

0.6

0.8

1.0
µ = 0.0

µ = 0.15

µ = 0.5

We use the same synthetic network to test to what extent
metadata helps to compensate for missing data, and assign meta-
data labels to the nodes based on their ground truth community
membership. However, incorrect metadata labels can be a source
of further uncertainty, which we simulate by assigning random
labels to a µ-fraction of the nodes. The regularised map equation
detects the correct number of modules as longs as a large frac-
tion of the nodes is labelled correctly, but assigns some nodes
to the wrong modules. For large amounts of missing data and
mislabelled nodes, it returns the one-level partition (Figure 29).

We also test how the standard and regularised map equation
perform in three49 real-world networks with metadata labels: a49 Paper II contains re-

sults for six real-world
networks [2].

dataset of citations between computer science research articles
(CoRA) where we use research topics as metadata [47], a net-
work of Pokémon where any two Pokémon who share the same
ability are connected and we use their primary type as meta-
data [6], and a network of airports outside the United States
of America that are connected by regular flights where we use
the airports’ country as metadata [58]. The networks’ sizes and

incomplete data 53

Name |V| |E| m Kind

CoRA 3,385 22,902 9 Directed
Pokémon 743 18,184 18 Undirected
Openflights 964 8,850 97 Directed

Table 6: Details of
three real-world net-
works with metadata
where |V| is the num-
ber of nodes, |E| the
number of links, and m
the number of metadata
categories.

number of metadata categories are listed in Table 6.
In the real-world networks, too, the regularised map equation

reduces overfitting such that the number of detected communi-
ties remains relatively stable for different amounts of missing
data. The point at which it returns the one-level partition differs
depending on the network. The results suggest that metadata
labels can help in uncovering the networks community struc-
ture, such as in the Pokémon and Openflights datasets, while
they may represent a too strong prior in, for example, the CoRA
dataset (Figure 30).

(a)

N
um

be
r

of
co

m
m

un
iti

es

0.0 0.2 0.4 0.6 0.8

1

10

100

1000

Fraction of removed observations, r

CoRA
Standard

Regularised

Regularised with
metadata

(b)

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0

10

20

30

40

50

60

N
um
be
r
of
co
m
m
un
iti
es

Pokémon

(c)

N
um
be
r
of
co
m
m
un
iti
es

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

0

20

40

60

80

100 Openflights

Figure 30: Number of
communities detected
by the regularised and
standard map equation
in three real-world net-
works. The regularised
map equation reduces
the impact of missing
data, and detects no
communities when we
remove too much data.

Since no ground truth communities for the real-world net-
works are known, we take a different approach to quantify how
well we can describe their structure: first, we remove an r-
fraction of the links. Second, we split the remaining links into
equally sized train and test networks, Gtrain and Gtest, and detect
communities in the train network. Third, we use the communi-
ties from the train network to partition the test network, and
measure the codelength savings compared to the one-level par-
tition50. Let M be the partition detected in the train network, 50 We need to keep in

mind that this approach
reduces the amount of
available data so that
we cannot compare the
results with those from
the previous analysis.

and M1 be the one-level partition; then we calculate codelength
savings achieved by M as 1 − L(M,Gtest)

L(M1,Gtest)
. Positive codelength

savings indicate that the partition detected in the train network

54 through the coding-lens

captures structure that is present in the test network, simply
because it provides a better description of the data than the one-
level partition. Conversely, partitions that lead to negative code-
length savings capture patterns that are not present in the test
network. Both the standard and regularised map equation de-

(a)

C
od

el
en

gt
h

sa
vi

ng
s

[%
]

0.0 0.2 0.4 0.6 0.8

-10

0

10

20

Fraction of removed observations, r

Standard

Regularised

Regularised with
metadata

CoRA

(b)

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

-5

0

5

10

15

C
od
el
en
gt
h
sa
vi
ng
s
[%
] Pokémon

(c)

C
od
el
en
gt
h
sa
vi
ng
s
[%
]

0.0 0.2 0.4 0.6 0.8
Fraction of removed observations, r

-5

0

5

10

15

Openflights

Figure 31: Codelength
savings for the regu-
larised and standard
map equation in three
real-world networks.
The standard map
equation detects useful
structure when small
to moderate amounts
of data are missing,
but overfits for large
amounts of missing
data. In contrast, the
regularised map equa-
tion reduces overfitting
and returns the one-
level partition when too
much data is missing.

tect useful communities when small to moderate amounts of the
data are missing. However, when large amounts are missing,
the standard map equation finds spurious communities, leading
to negative codelength savings. In contrast, the regularised map
equation returns the one-level partition when too much data is
missing, and, thereby, reduces overfitting (Figure 31).

Future Directions

In this chapter, we have only considered incomplete observa-
tions, but in practice, networks may also involve spurious ob-
servations where link weights are higher than they should be,
caused by, for example, a malfunctioning measuring instrument,
or by human mistakes. We could generalise our approach to
address this situation by making the right prior assumptions re-
garding how the data is distributed.

Another generalisation could be to assume specific patterns
regarding how incomplete observations are distributed. Per-
haps some nodes are more, or less prone to be involved in miss-
ing links and, again, by making the right prior assumptions, we
could address this case.

Community-Aware Centrality

There are more things in heaven
and earth, Horatio, than are
dreamt of in your philosophy.

Hamlet
by William Shakespeare

The map equation’s original purpose is to detect communities
in complex networks. It helps us understand how networks
are organised, and allows us to represent them as networks of
modules that interact with each other. But community detection
is not the end of the story. In many real-life applications, we
also want to compare nodes with each other and rank them ac-
cording to their importance (Figure 32). For example, when we
search the web for information, we want to select the most rele-
vant website for our search query. In infrastructure networks, we
want to identify what components have the most impact when
they fail so we can secure them with backups. To devise effective
vaccination strategies, we need to find those people in a contact
network who would drive the spread of a disease.

Figure 32: Example net-
work with eight nodes
and ten links. Which of
the nodes are most im-
portant, and how does
their community mem-
bership contribute to
their importance?

How can we use the map equation to determine how im-
portant a node is? We look through the coding-lens again and
consider how much a node’s presence affects the codewords as-
signed to the remaining nodes compared to if it was not present.
We assume that the larger the effect a node has, the more impor-
tant it is. Combining the concept of network vitality, the Vickrey-
Clarke-Groves (VCG) principle for setting prices in multi-item
auctions, and the coding principles behind the map equation,
we define node u’s importance as the codelength difference be-

56 through the coding-lens

tween (i) the optimal coding scheme that assigns codewords to
all nodes but never uses the codeword for u, and (ii) the optimal
coding scheme that assigns codewords to all nodes but u [3].

Network Vitality

Our idea to relate a node’s importance to how its presence affects
the coding scheme is inspired by the concept of network vitality.
With respect to some function f that operates on graphs and
calculates a numerical value, the vitality µ (G, u) for node u is

µ (G, u) = f (G)− f (G− {u}) , (47)

where G − {u} denotes G with node u removed [40]. We can
easily extend network vitality to include communities,

µ (G,M, u) = f (G,M)− f (G− {u} ,M− {u}) , (48)

where M− {u} denotes the partition M with node u removed,
and f is now a function that operates on pairs of graphs and
partitions. Then, we could set f = L and use the map equation
to calculate node importances51.51 This idea was used to

define modularity vital-
ity [48], a community-
aware centrality score
based on the modular-
ity function [54].

However, there is a problem with deleting a node from the
network: the random walk’s dynamics change. In general, this
affects the network’s community structure because node visit
and transition rates change. Equation (48) addresses this issue
by fixing the partition, but with the map equation, we can take
a more subtle approach: we keep the network unchanged, and
only omit the respective node’s codeword when describing the
network — we call this silencing a node.

Second-Price Auctions and the VCG Principle

Imagine you are bidding for a painting in an auction. How much
should you bid? The answer depends on how much you think
the painting is worth, how many other bidders are involved, and
the format of the auction. But clearly, you should not bid more
than you think the painting is worth and, ideally, you want to
buy it for less than that. The painting’s selling price depends

community-aware centrality 57

on how much you and others bid, and is determined by the
auction’s rules.

In so-called second-price sealed-bid auctions, the participants
submit bids for a single item simultaneously and secretly, and
the item is sold to the person with the highest bid for a price
equal to the second-highest bid [83]. That is, a person’s bid only
determines whether they win the auction, but how much they
have to pay depends on the other participants’ bids52.

52 For second-price auc-
tions, the best strategy
is to bid what you think
the item is worth.

⋆

■

▲

A

B

C

5, 3, 1

4, 2, 1

3, 1, 0

Figure 33: Three bid-
ders A, B, and C are
bidding on three items
⋆, ■, and ▲. The
bidders’ item valuations
are shown to their right
in the same order as the
items, and links show
who gets which item.

⋆

■

▲

A

B

C

4, 2, 1

3, 1, 0

Figure 34: Without bid-
der A, B gets ⋆, and C
gets ■.

The VCG principle generalises this idea to the multi-item
case, such as AdWords auctions, and determines the price that
bidder b pays for item i as the marginal harm caused to other
bidders who, because of b’s existence, receive an item j ̸= i that
they value lower than i [43]. Figure 33 shows a scenario with
three bidders, three items, the bidders’ valuations for the items,
and who receives which item. We assume that all bidders make
bids according to their valuations, that they are willing to pay
no more than their valuations, and are interested in purchasing
at most one item. What should the prices be? Figure 34 shows
which items B and C would receive if A did not exist: B and C
would get items ⋆ and ■, which they value at 4 and 1, instead
of ■ and ▲, which they value at 2 and 0, respectively. Together,
they would be better off by a value of (4-2) + (1-0) = 3, which is
A’s price for ⋆. B’s price for ■ is 3-1 = 2 because B only causes
harm to C, who would get ■ instead of ▲ if B did not exist. C’s
price for ▲ is 0 because C causes no harm to anyone53. Impor-

53 We can interpret a
price of 0 as some ar-
bitrary baseline and all
other amounts as offsets
from that baseline.

tantly, these prices do not depend on the bidders own valuations
or bids, but on the harm they cause to others.

Applying the VCG Principle to Coding

We use the VCG principle to assign importances to nodes based
on the total additional codeword length their presence causes for
the remaining nodes. As an example, we take the network G and
partition M = {{1, 2, 3, 4} , {5, 6, 7, 8}} as shown in Figure 35(a),
and calculate the importance for node 5. To begin with, we
design a coding scheme where all nodes have codewords, and
all codewords are used (Figure 35(b)). We describe the random
walk sequence through nodes 2 1 3 4 5 6 5 8 with the codeword

58 through the coding-lens

sequence 0 10 00 110 01 111 1 0 100 0 110, which is 22 bits
long. The codelength for M is

L (G,M) =
2

20
· H

(
1
2

,
1
2

)
index level

+
12
20
· H

(
3
12

,
2

12
,

2
12

,
4

12
,

1
12

)
blue module

+
10
20
· H

(
4

10
,

2
10

,
2

10
,

1
10

,
1

10

)
orange module

≈ 2.47 bits, (49)

Figure 35: (a) A net-
work with eight nodes,
ten links, two commu-
nities, and (b) its cod-
ing scheme. All the
nodes have codewords,
and all codewords are
used when the random
walker visits the respec-
tive node.

(a)

1

2

3

4 5

6

7

8

00 2.0

10 2.58

110 2.58

01 1.58

0 1.32

100 2.32

101 2.32

110 3.32

A0 1.0 111 3.58
B1 1.0 111 3.32

(b)

A 0
B 1

1 00

2 10

3 110

4 01

exit 111

5 0

6 100

7 101

8 110
exit 111

If we silence node 5 by simply not using its codeword54, we

54 We only omit visits
to node 5, but encode
module entries and ex-
its through 5.

would describe the sequence as 0 10 00 110 01 111 1 100 110,
and use only 20 bits (Figure 36). The codelength for using the
same coding scheme but silencing node 5 is55

55 Note that the inputs
to the entropy of the
orange module are not
normalised, and we do
not assume normalisa-
tion by convention in
this chapter.

Lu (G,M) =
2

20
· H

(
1
2

,
1
2

)
index level

+
12
20
· H

(
3
12

,
2
12

,
2

12
,

4
12

,
1
12

)
blue module

+
10
20
· H

(
2

10
,

2
10

,
1
10

,
1

10

)
orange module

≈ 2.21 bits. (50)

However, assigning a codeword but never using it is inefficient.
Node 5 has codeword 0, which makes it impossible for any other
codeword in the same module to begin with 0. We should in-
stead design a new coding scheme that does not assign a code-
word to the silenced node in the first place. That way, we can

community-aware centrality 59

shorten the codewords for the remaining nodes (Figure 37). With

(a)

1

2

3

4 5

6

7

8

00 2.0

10 2.58

110 2.58

01 1.58

0 1.32

100 2.32

101 2.32

110 3.32

A0 1.0 111 3.58
B1 1.0 111 3.32

(b)

A 0
B 1

1 00

2 10

3 110

4 01

exit 111

5 0

6 100

7 101

8 110
exit 111

Figure 36: A coding
scheme where node 5

is silenced by not using
its codeword. In prin-
ciple, we could encode
random walker visits to
node 5 because it has
a codeword. Node 5

is drawn as a ring with
labels to symbolise that
it is silenced but has a
codeword.

(a)

1

2

3

4

6

7

8

00 2.0

10 2.58

110 2.58

01 1.58

00 1.58

01 1.58

10 2.58

A0 1.0 111 3.58
B1 1.0 11 2.58

(b)

A 0
B 1

1 00

2 10

3 110

4 01

exit 111

6 00

7 01

8 10
exit 11

Figure 37: A coding
scheme where node 5

is silenced by not as-
signing a codeword to
it. With this coding
scheme, the other nodes
in the orange mod-
ule are assigned shorter
codewords, but it is im-
possible to encode ran-
dom walker visits to
node 5. Node 5 is
drawn as a ring without
labels to symbolise that
it is silenced and does
not have a codeword.

such a coding scheme, we describe the node sequence as 0 10

00 110 01 111 1 00 10, using 18 bits. The codelength with the
new coding scheme is

Lu∗ (G,M) =
2
20
· H

(
1
2

,
1
2

)
index level

+
12
20
· H

(
3

12
,

2
12

,
2

12
,

4
12

,
1

12

)
blue module

+
6

20
· H

(
2
6

,
2
6

,
1
6

,
1
6

)
orange module

≈ 1.99 bits. (51)

60 through the coding-lens

Lu (Equation (50)) corresponds to (i) the optimal coding scheme
that assigns codewords to all nodes but never uses the code-
word for node 5, and Lu∗ (Equation (51)) corresponds to (ii)
the optimal coding scheme that assigns codewords to all nodes
but 5 — the two ingredients to apply the VCG principle. The
total harm that node 5 causes the other nodes is Lu − Lu∗ =

2.21 bits− 1.99 bits = 0.22 bits. We call this measure map equa-
tion centrality.

Map Equation Centrality

To calculate map equation centrality for a node u directly, we
begin by rewriting the map equation, and separate between the
module that contains u and the rest of the modules,

L (G,M) = q · H (Q) + ∑
m∈M

pm · H (Pm) (52)

=

index level

q · H (Q) +

modules without u

∑
m∈M
m ̸=mu

pm · H (Pm)−
module with u

∑
p∈Pmu

p log2
p

pmu

where mu is the module that contains u.
We get the codelength for silencing a node u by not using its

codeword by removing u from the summation in its module mu,

Lu (G,M) =

index level

q · H (Q) +

modules without u

∑
m∈M
m ̸=mu

pm · H (Pm)−
module with u

∑
p∈Pmu\{pu}

p log2
p

pmu

. (53)

For a coding scheme that does not assign codewords to si-
lenced nodes, we re-normalise the codeword usage rates for the
remaining nodes and module exits in mu by pmu − pu,

Lu∗ (G,M) =

index level

qH (Q) +

modules without u

∑
m∈M
m ̸=mu

pmH (Pm)−
module with u

∑
p∈Pmu\{pu}

p log2
p

pmu − pu
. (54)

We define map equation centrality, λ, as the difference be-
tween Equation (53) and Equation (54), where the parts for the
index level and the modules that do not contain u cancel out

community-aware centrality 61

such that node u’s importance is defined by its module context
mu,

λ (G,M, u) = Lu (G,M)−Lu∗ (G,M)

= −∑
p∈Pmu\{pu}

p log2
pmu − pu

pmu

(55)

= − (pmu − pu) log2
pmu − pu

pmu

. (56)

Equation (55) shows that all the nodes in mu would have shorter
codewords if u did not exist. We can calculate u’s importance,
that is the total number of bits by which the other nodes’ code-
words could be shortened, directly from u’s and mu’s codeword
usage rates (Equation (56)).

For the one-level partition M1 where all nodes are assigned to
the same module, Equations (53) and (54) simplify to

Lu (G,M1) = − ∑
v∈V
v ̸=u

pv log2 pv, (57)

Lu∗ (G,M1) = − ∑
v∈V
v ̸=u

pv log2
pv

1− pu
, (58)

and the importance of node u becomes

λ (G,M1, u) = Lu (G,M1)−Lu∗ (G,M1)

= − (1− pu) log2 (1− pu) . (59)

Different Flows, Different Scores

The map equation is flexible in the sense that it can operate on
top of different flow models, such as smart teleportation [42] or
PageRank [31], to detect communities. In principle, we could
design a specialised flow model for each network we analyse
such that it represents the dynamics on the network well, and
calculate the node visit and transition rates analytically or nu-
merically [7]. Generally, different flow models lead to different
node visit and transition rates and give rise to different parti-
tions. The same applies to map equation centrality: different
flow models lead to different centrality scores [3].

62 through the coding-lens

Table 7: Details of
four real-world net-
works where |V| is the
number of nodes, |E|
the number of links,
and mst and mpr the
number of detected
modules using the
smart teleportation and
PageRank flow models,
respectively.

Name |V| |E| pth mst mpr

Facebook friends 329 1,954 0.048 21 22
Power 4,941 6,594 0.348 428 465
Physics collaborations 8,798 27,416 0.066 610 656
Google 15,763 171,206 0.001 597 600

The purpose of centrality scores is to decide how important a
node is, and many different approaches exist, both community-
aware and community-un-aware scores. Neither of those scores
is a-priori more correct or incorrect than any other; different
centrality scores simply provide different aspects on node im-
portance, and it depends on the specific research question and
scenario which centrality score is most applicable. Therefore,
we evaluate map equation centrality by measuring how well it
identifies the most important nodes according to two different
spreading processes in different real-world networks, and com-
pare it with a set of community-aware and community-un-aware
scores.

For comparison, we use three community-aware centrality
scores, modularity vitality [48], community hub-bridge [29], and
community-based centrality [89], as well as two community-un-
aware scores, degree centrality and betweenness centrality [40].
We apply the scores to four56 real-world networks: a social net-56 Paper III contains re-

sults for eight more net-
works [3].

work where nodes represent persons who are connected if they
are friends on Facebook [49], a power grid network where nodes
represent power stations that are connected if a power line runs
between them [87], a co-authorship network between physicists
who are connected if they have authored an arXiv preprint to-
gether [14], and a directed web network of internal pages at
Google [59] (Table 7). We use Infomap to detect communities,
both using smart teleportation and PageRank with teleportation
rate 0.15, and select the partition with the shortest codelength
from 1000 runs.

The first spreading process is the linear threshold model that
can be used to model the adoption of ideas and behaviours, such
as supporting a political party or using a certain technology [3,
64]. Initially, most nodes adopt opinion A while a small fraction

community-aware centrality 63

adopts opinion B. Then, we run a simulation: each node who be-
lieves A considers how many of their neighbours believe B, and
if at least a t-fraction of them believe B, then the node switches
to believe B as well; once nodes adopt opinion B, they are not
allowed to switch to A. We repeat the simulation until no more
nodes change their opinion, and measure the activation size as
the fraction of nodes who have adopted opinion B. To decide
which nodes start with B, we rank them by their importance ac-
cording to each centrality score, and select different fractions of
top-ranked nodes. The goal is to achieve a high activation size
at the end of the simulation.

(a)

0.00 0.05 0.10 0.15 0.20
fraction initially active

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
siz

e

Facebook friends
MEC
MV
CHB

CBC
DC
BC

(b)

0.00 0.05 0.10 0.15 0.20
fraction initially active

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
siz

e

Power

(c)

0.00 0.05 0.10 0.15 0.20
fraction initially active

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
siz

e

Physics collaborations
(d)

0.00 0.05 0.10 0.15 0.20
fraction initially active

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
siz

e

Google (directed)

Figure 38: The activa-
tion size as the fraction
of nodes that adopt
opinion B at the end of
a simulation following
the linear threshold
model. We compare the
four community-aware
scores map equation
centrality (MEC), mod-
ularity vitality (MV),
community hub-bridge
(CHB), community-
based centrality (CBC),
and the community-
un-aware scores degree
centrality (DC) and
betweenness centrality
(BC). Solid lines and
filled markers use the
smart teleportation flow
model, dashed lines
and empty markers use
standard PageRank.

For t = 0.5, that is, nodes adopt behaviour B if at least half of
their neighbours have done so57, we find that map equation cen- 57 Paper III contains re-

sults for t ∈ {0.4, 0.6} as
well.

trality outperforms the remaining measures in three out of the
four selected networks (Figure 38). The community-aware cen-
trality scores’ performance depends on which flow model we
use, and is better with standard PageRank in this scenario. This

64 through the coding-lens

suggests that PageRank captures the linear threshold model’s
dynamics better, leading to more suitable communities for iden-
tifying influential nodes in this application.

Figure 39: Impreci-
sion for identifying the
top spreaders, using
SIR spreading power as
ground truth. Solid
lines and filled markers
use the smart teleporta-
tion flow model, dashed
lines and empty mark-
ers use standard Page-
Rank.

(a)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0.0

0.2

0.4

0.6

0.8

1.0

im
pr

ec
isi

on

c
Facebook friends

map equation centrality
modularity vitality
community hub-bridge
comm.-based centrality
degree centrality
betweenness centrality

(b)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0.0

0.2

0.4

0.6

0.8

1.0

im
pr

ec
isi

on

c

Power

(c)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0.0

0.2

0.4

0.6

0.8

1.0

im
pr

ec
isi

on

c

Physics collaborations
(d)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0.0

0.2

0.4

0.6

0.8

1.0
im

pr
ec

isi
on

c

Google (directed)

As a second process, we consider the so-called Susceptible-
Infected-Removed (SIR) disease spreading model: initially, all
nodes but one are in the susceptible state, the remaining node u
begins in the infected state. We run a simulation where, at each
time step, infected nodes infect their susceptible neighbours uni-
formly and independently with probability p, then enter the re-
moved state, and are no longer part of the simulation. We con-
tinue until no infected nodes are left, and define u’s spreading
power as the number of nodes in the removed state [3, 65]. Be-
cause of stochasticity, we repeat the simulation 1000 times per
node, and take their average spreading power. We use centrality
scores to approximate the nodes’ spreading power and identify
influential spreaders. We rank the nodes according to each cen-
trality score c, select different x-fractions of top-ranked nodes,

community-aware centrality 65

and use the imprecision function ϵc (x) = 1 − Mc(x)
MSIR(x) [39] to

measure how well the selected nodes’ and the SIR top spread-
ers’ average spreading powers align. Here, Mc (x) and MSIR (x)
are the average spreading power of the top x-fraction accord-
ing to centrality score c and the SIR model, respectively. As
infection probability p, we use the so-called epidemic threshold
pth = ⟨k⟩

⟨k2⟩−⟨k⟩ , where ⟨k⟩ = 1
|V| ∑v∈V kv and ⟨k2⟩ = 1

|V| ∑v∈V k2
v

are the first and second moments of the network’s degree distri-
bution [85]. The goal is to achieve a low imprecision.

In this scenario, smart teleportation leads to better results
than PageRank, especially for map equation centrality. The other
three community-aware centrality scores are less affected (Fig-
ure 39). Map equation centrality performs well in the social,
power, and co-authorship networks, but is outperformed in the
web network where the other scores do better, except for be-
tweenness centrality.

Node Distribution

Map equation centrality’s performance depends on the choice
of flow model because different flow models lead to different
modules. The better the modules characterise the dynamics
of the process we investigate — in our case the linear thresh-
old model and the SIR disease spreading model — the more
accurately we can identify important nodes. Our results (Fig-
ures 38 and 39) suggest that smart teleportation characterises the
SIR disease spreading model better while standard PageRank is
more aligned with the linear threshold model.

We calculate the perplexity for different fractions of top-rank-
ed nodes to understand how the centrality scores distribute them
across modules. Let M be a partition, m ∈ M be a module, and
let S be the set of selected nodes by some centrality measure.
Then, |m∩S|

|S| is the fraction of selected nodes in module m, and

the perplexity of S is 2H(S) withH (S) = −∑m∈M
|m∩S|
|S| log2

|m∩S|
|S| .

The perplexity is the effective number of same-sized modules
across which the selected nodes are distributed uniformly, and
a higher perplexity means that the nodes are distributed across
more modules.

66 through the coding-lens

Our results show that the top-ranked nodes are more spread
out for standard PageRank than for smart teleportation (Fig-
ure 40). We can explain this with how PageRank works: with
teleportation rate r, each node receives a flow of at least r

|V| .
With smart teleporation, smaller values are possible.

Figure 40: Node dis-
tribution perplexity for
the six tested scores
in four networks. A
higher perplexity corre-
sponds to a more uni-
form node distribution
across modules.

(a)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0

10

20

30

pe
rp

le
xi

ty

Facebook friends
map equation centrality
modularity vitality
community hub-bridge
comm.-based centrality
degree centrality
betweenness centrality

(b)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0

100

200

300

pe
rp

le
xi

ty

Power

(c)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0

100

200

300

400

500

pe
rp

le
xi

ty

Physics collaborations
(d)

0.00 0.05 0.10 0.15 0.20
fraction top spreaders

0

100

200

300

pe
rp

le
xi

ty

Google (directed)

To perform well in the SIR case, a centrality measure should
select high-degree nodes because they have a higher opportunity
to infect other nodes. Conversely, under the linear threshold
model, it is more important to spread out the selected nodes
across tightly-knit communities to reach a high activation size,
or high-density communities will stop the activation of nodes
[17, p. 507].

Future Directions

We could generalise map equation centrality for overlapping
communities where nodes can be members in more than one

community-aware centrality 67

module, reflecting how people are part of multiple and over-
lapping social groups. Each module membership would then
contribute to a node’s centrality.

When selecting top-ranked nodes, we could adopt a dynamic
view of node importance: instead of selecting the k top-ranked
nodes all at once, we would select them one-by-one, considering
how each node’s importance changes once we have selected one
node and silenced it. Each time we silence a node, we obtain a
new coding scheme that defines the importance of the remaining
nodes, potentially leading to a choice of k nodes that is different
from what we would get from a static point of view.

Community-Based Link Prediction

Mathematicians do not study
objects, but the relations between
objects; to them it is a matter of
indifference if these objects are
replaced by others, provided that
the relations do not change.

Henri Poincaré

Networks as models of real-world systems describe our obser-
vations, and communities summarise their structure. When net-
works change over time, we want to predict what links are most
likely to form in the future. This would let us, for example, rec-
ommend new friends to users of online social networks, ensure
that shops have the right products in stock by predicting their
customers’ purchase behaviour, and plan capacities in public
transport networks through forecasting people’s travel patterns.

(a)

1

2

3 4

5 6

7

8

9

A0 1.0 1101 3.6
B1 1.0 001 3.3

111 2.6

1100 3.6

01 2.0 00 2.6

10 2.0 10 1.8

01 2.3

11 1.8

000 3.3

(b)

A 0
B 1

1 111

2 1100

3 01

4 00

5 10

exit 1101

6 10

7 01

8 11

9 000
exit 001

Figure 41: A network
with two communities,
both not fully con-
nected, and a coding
scheme. Which other,
non-observed links, are
most consistent with
the observed links?

70 through the coding-lens

On a basic level, predicting links means assigning values to
non-links so that we can select the best ones. Those values could
be likelihoods or costs. With the map equation, a simple way to
calculate the cost for a link e = (u, v) is to consider how inserting
e into a network G = (V, E) with u, v ∈ V and e /∈ E affects the
codelength of G’s partition M:

σ (G,M, e) = L (G + {e} ,M)−L (G,M) , (60)

where G + {e} denotes G with link e inserted [30]. Between two
links e1 and e2, we select the one with the lower cost, that is the
one that increases M’s codelength less. Inserting a link changes
the degrees of its two endpoint nodes as well as all nodes’ visit
rates. Consider the example network in Figure 41 and partition
M = {{1, 2, 3, 4, 5} , {6, 7, 8, 9}} with codelength

L (G,M) =
2
20
· H

(
1
2

,
1
2

)
index level

+
12
20
· H

(
2

12
,

1
12

,
3

12
,

2
12

,
3

12
,

1
12

)
blue module

+
10
20
· H

(
3

10
,

2
10

,
3
10

,
1

10
,

1
10

)
orange module

≈ 2.66 bits. (61)

Inserting the link e1 = (1, 4) into G (Figure 42) leads to the new
codelength

L (G + {(1, 4)} ,M) =
2
22
· H

(
1
2

,
1
2

)
index level

+
14
22
· H

(
3

14
,

1
14

,
3

14
,

3
14

,
3

14
,

1
14

)
blue module

+
10
22
· H

(
3

10
,

2
10

,
3
10

,
1

10
,

1
10

)
orange module

≈ 2.64 bits, (62)

and σ (G,M, e1) = L (G + {(1, 4)} ,M)− L (G,M) ≈ −0.02 bits.
e1 improves the compression because it increases the blue mod-
ule’s flow persistence. While e1 changes the blue nodes’ theo-
retical codeword lengths, the concrete coding scheme remains
optimal. Inserting e2 = (4, 7) into G (Figure 43) leads to the new
codelength

community-based link prediction 71

L (G + {(4, 7)} ,M) =
4

22
· H

(
2
4

,
2
4

)
index level

+
14
22
· H

(
2

14
,

1
14

,
3

14
,

3
14

,
3

14
,

2
14

)
blue module

+
12
20
· H

(
3
12

,
3

12
,

3
12

,
1
12

,
2

12

)
orange module

≈ 2.99 bits, (63)

(a)

1

2

3 4

5 6

7

8

9

A0 1.0 1101 3.8
B1 1.0 001 3.3

111 2.2

1100 3.8

01 2.2 00 2.2

10 2.2 10 1.8

01 2.3

11 1.8

000 3.3

(b)

A 0
B 1

1 111

2 1100

3 01

4 00

5 10

exit 1101

6 10

7 01

8 11

9 000
exit 001

Figure 42: The net-
work with link (1, 4) in-
serted and its new cod-
ing scheme for the same
partition. The theoret-
ical codelengths for all
codewords in the blue
module change while
the index level and the
orange module remain
unaffected.

(a)

1

2

3 4

5 6

7

8

9

A0 1.0 110 2.8
B1 1.0 001 2.6

1111 2.8

1110 3.8

01 2.2 00 2.2

10 2.2 10 2.0

01 2.0

11 2.0

000 3.6

(b)

A 0

B 1

1 1111
2 1110

3 01

4 00

5 10

exit 110

6 10

7 01

8 11

9 000
exit 001

Figure 43: The net-
work with link (4, 7)
inserted and its new
coding scheme for the
same partition. The
theoretical codelengths
for all codewords in
all modules change be-
cause the inserted link
spans across both mod-
ules and also affects
module entry rates.

72 through the coding-lens

and σ (G,M, e2) = L (G + {(4, 7)} ,M)−L (G,M) ≈ 0.33 bits. e2

has a higher cost because it decreases both modules’ flow persis-
tence and increases the index codebook’s usage rate. In princi-
ple, adding a link to a network can change its community struc-
ture, which we would only notice if we search for communities
again. We have avoided this by considering how an additional
link changes a fixed partition’s codelength, rather than asking
what the new best partition and its codelength would be.

However, there is an efficiency problem with this: adding a
link to a network changes all node visit and codebook usage
rates, meaning that we need to evaluate the whole map equation
again58. To find the link that, when inserted, would have the58 We could remember

and re-use the module-
level entropies of unaf-
fected modules.

lowest cost, we need to calculate costs for O
(
n2) many links in

a network with n nodes, which quickly becomes impractical.

Node Embeddings

Node-embedding methods map nodes to points in d-dimen-
sional metric space, that is, nodes u and v would be located
at u⃗ and v⃗, where typically d ≪ n [33]. Roughly speaking, a
good embedding places more similar nodes closer together, that
is when they share more common neighbours and are located
in more similar network regions, meaning that we can approx-
imate their similarity by measuring, for example, their distance
in the embedding space as ∥u⃗− v⃗∥, or the angle θ between their
vectors with cosine similarity as cos (θ) = u⃗·⃗v

∥u⃗∥·∥v⃗∥ , where ∥·∥ is
the vector norm. A simple way to predict links is then to select
those disconnected node pairs that are most similar, reflecting
the idea that it is easier for nodes to connect if they are em-
bedded closer together [90]. To avoid computing similarities for
all O

(
n2) node pairs when using their embedding vectors’ dis-

tance for similarity, we could store them in a k-d tree, a data
structure that enables finding a nearest neighbours in O (log n)
time [8]. Then, identifying the most likely link would involve
finding each node’s nearest neighbour, taking time O (n log n),
and selecting the most likely link from amongst n candidates.

community-based link prediction 73

Using the Codebooks

We take inspiration from node embedding-based approaches
and interpret Huffman coding ensembles as implicit embed-
dings. But instead of mapping nodes to points in some metric
space and then calculating their similarities, we calculate their
similarities directly. The key insight is that, while random walks
are constrained by the links in a network, a coding scheme is
more flexible and we can use it to describe transitions between
any pair of nodes, whether they are connected by a link or not.

Coming back to the idea that more similar objects compress
more efficiently together [71], we use the coding principles be-
hind the map equation to predict links, adopting a community-
based point of view. Because we characterise modules as regions
with high flow persistence, they naturally represent network
neighbourhoods with high internal similarity. Consequently,
we expect that compression-based link prediction favours links
within modules.

(a)

1

2

3 4

5 6

7

8

9

A0 1.0 1101 3.6
B1 1.0 001 3.3

111 2.6

1100 3.6

01 2.0 00 2.6

10 2.0 10 1.8

01 2.3

11 1.8

000 3.3

(b)

A 0
B 1

1 111

2 1100

3 01

4 00

5 10

exit 1101

6 10

7 01

8 11

9 000
exit 001

Figure 44: We fix the
coding scheme and use
it to describe random
walker steps along the
directed non-links (1, 4)
and (4, 7).

Consider the example network and coding scheme from Fig-
ure 44 with the two directed non-links (1, 4) and (4, 7). How can
we describe random-walker transitions along those links with
the coding scheme we have? First, we recall that, when coding
with the map equation, we keep track of the random walker’s

74 through the coding-lens

current module, but not the current node, meaning that a node
always has the same codeword, regardless of where the random
walker comes from. To describe the directed intra-module link
(1, 4), we use a single codeword, that is, the one assigned to
the target node, 00, using 2.6 bits in the information-theoretic
limit. Describing the directed inter-module link (4, 7) requires
three codewords, that is a module exit codeword, a module en-
try codeword, and a node visit codeword, 1101 1 01, using 3.6
bits + 1.0 bit + 2.3 bits = 6.9 bits in the information-theoretic
limit. Since we need fewer bits to describe (1, 4) than (4, 7),
we consider the former more likely. In general, to describe a
link, we begin in its source node’s module and search the cod-
ing scheme for the shortest path to the link’s target node, and
use the codewords along this path.

Our approach has a few implications we should keep in mind.
First, describing links from different source nodes in the same
module to the same target node requires the same number of
bits because both correspond to the same coding path. Turn-
ing link descriptions dependent on their source node requires
equipping the random walker with memory, contradicting the
map equation’s coding principles. Second, we can only directly
assign costs to directed links because describing a link corre-
sponds to a random-walker transitions, which itself is directed.
To assign a cost to an undirected link (u, v), we could consider
the two directed links (u, v) and (v, u), calculate costs for both,
and take the average. Third, we relate a link’s likelihood to how
expensive, in bits, it would be to describe, given a fixed coding
scheme, but we do not say anything about its weight. In fact, re-
gardless of a link’s weight, with a fixed coding scheme, it would
always have the same description.

Map Equation Similarity

Map equation similarity derives node similarity from modular
coding schemes. Consider the coding scheme in Figure 44(b)
again and recall that block heights show the codewords’ usage
rates. Random walkers at the index level use the entry code-
words for the blue and orange modules at rate 1

2 each. A ran-

community-based link prediction 75

dom walker in the blue module uses node 4’s codeword at rate
2

12 , and the exit codeword at rate 1
12 ; a random walker in the or-

ange module uses node 7’s codeword at rate 2
10 . By multiplying

the usage rates along a path in the coding scheme, we get the
rate r at which the random walker uses that path, and − log2 (r)
tells us how many bits we need to describe that transition. For
example, describing the transition from any node in the blue
module to node 4 requires − log2

(2
12
)
≈ 2.6 bits, and describ-

ing the transition from any node in the blue module to node 7

requires − log2

(
1

12 · 1
2 · 2

10

)
≈ 6.9 bits.

1
...

p1

...

n

1
...
n

exit

...

1
...

pi

...
n

exit

1
...

...

n
exit

uj

...

...

vj

...
exit

uk

...

...

u

exit

vk

...

...
...

exit

vl

...

...
v

exit

rev(M⟨p⟩, [uj, uk])

forw(M⟨p⟩, [vj, vk, vl])

prefix p = [p1, ... , pi]

Figure 45: Illustration
of map equation sim-
ilarity between nodes
u and v. We number
each codebook’s entries
from 1 to n and use the
numbers as addresses.
Node u has address
[p1, . . . , pi , uj, uk], and v
has [p1, . . . , pi , vj, vk , vl].
Their longest common
prefix is p = [p1, . . . , pi],
and M⟨p⟩ is the sub-
module at that address,
that is the smallest
module that contains
u and v. We get the
similarity of u to v by
traversing backwards
from u’v module to
M⟨p⟩, and then for-
wards to v’s module,
including visiting v,
and multiplying the
corresponding code-
word usage rates along
the way.

To derive map equation similarity for the general case, where
M can be a hierarchical network partition, we number the sub-
modules within each module m from 1 to nm, and refer to these
numbers as addresses, such that an ordered sequence of ad-
dresses uniquely identifies a path starting at the coding tree’s
root. Let addr : M × V → List (N) be a function that takes a
network partition and a node as input, and returns the node’s
address in the partition. To calculate the similarity of node v
to u, we identify the longest common prefix p of the nodes’ ad-
dresses, addr (M, u) and addr (M, v), and select the coding tree’s
sub-tree M⟨p⟩ that corresponds to the prefix p; M⟨p⟩ is the small-

76 through the coding-lens

est sub-tree that contains u and v. We obtain the addresses for
u and v within sub-tree M⟨p⟩ by removing the prefix p from
their addresses. That is, addr (M, u) = p ++ addr(M⟨p⟩, u) and
addr (M, v) = p ++ addr(M⟨p⟩, v), where ++ is list concatenation.
With this notation, the rate at which a random walker transitions
from u to v is the product of (i) the rate at which the random
walker moves along the path addr(M⟨p⟩, u) in reverse direction,
rev(M⟨p⟩, addr(M⟨p⟩, u)), that is from u to the root of M⟨p⟩, and
(ii) the rate at which the random walker moves along the path
addr(M⟨p⟩, v) in forward direction, forw(M⟨p⟩, addr(M⟨p⟩, v)),
that is from the root of M⟨p⟩ to v, where

rev (M, a) =

1 if a = [x]

M⟨[x]⟩,exit · rev(M⟨[x]⟩, a′) if a = [x] ++ a′
(64)

forw (M, a) =

p⟨[x]⟩
pM

if a = [x]

M⟨[x]⟩,enter · forw(M⟨[x]⟩, a′) if a = [x] ++ a′
(65)

and a′ denotes non-empty sequences. Here pM is the codebook
usage rate for module M and p⟨[x]⟩ is the visit rate for the node
identified by address x within the given module. The final ad-
dresses in Equations (64) and (65) are treated differently, reflect-
ing that the random walker does not remember the source node
but visits the target node. We define map equation similarity as

MapSim (M, u, v) = rev(M⟨p⟩, addr(M⟨p⟩, u)) · forw(M⟨p⟩, addr(M⟨p⟩, v)), (66)

where p is the longest common prefix shared by the addresses of
u and v in the coding tree defined by M. To express map equa-
tion similarity in terms of description length, we take the − log2
of MapSim and consider pairs of nodes that yield a shorter de-
scription length more similar. Figure 45 illustrates these ideas
with a generic coding scheme.

Efficient Predictions

With map equation similarity, we can predict links efficiently
by traversing the coding tree, starting simultaneously from each
node, enumerating links to other nodes in ascending cost order,

community-based link prediction 77

and merging the results into one list. In partitions that capture a
network’s structure well, random walkers change modules only
rarely, and module exits are expensive because they involve long
codewords. Therefore, traversing the coding scheme from each
node yields intra-module links first before using the exit code-
word and considering links to nodes in other modules.

Evaluating Link Predictions

There are many ways to set up the exact details for evaluat-
ing a method’s link prediction performance, but often, cross-
validation and negative sampling are used.

(a)

(b)

S1

(c)

S2

(d)

S3

Figure 46: A network
with 12 observed links
(a) and a split of its
links into three sets S1
(b), S2 (c), and S3 (d).

In so-called k-fold cross-validation, we randomly split the net-
work’s links into k equally-sized sub-sets, use k-1 of those sub-
sets for training, and the remaining sub-set for validation. For
example, with 3-fold cross validation, we split the links E into
three sets, S1, S2, and S3, where E = S1 ∪ S2 ∪ S3 (Figure 46).
Then, first, we use S1 ∪ S2 to train a model, and S3 to measure
its prediction performance59. Second, we use S1 ∪ S3 to train

59 In this case, we call
S1 ∪ S2 the training set,
and S3 the validation
set.

another model, and S2 to measure its performance. Third, we
use S2 ∪ S3 to train yet another model, and S1 to measure its
performance. Finally, we take the average of the models’ perfor-
mances.

To evaluate a model’s performance during cross-validation,
we calculate scores for the non-links. But since networks tend to
be sparse and there are of the order of O

(
n2) many non-links,

we only calculate scores for the links in the validation set S+
val as

well as for an equally large set of negative links S−val. A negative
link is a randomly chosen non-link that is neither part of the
train nor the validation set. We refer to the links in the original
validation set S+

val as positive links, those are links that do not
exist in the network because we have removed them, and we
hope to identify them through link prediction. Once we have
calculated scores for all links e ∈ Sval, where Sval = S+

val ∪ S−val,
we rank them.

To measure the performance, given the validation links’ rank-
ing, there are many options. A common way is to pick a thresh-
old t that determines how many of the top-ranked non-links we

78 through the coding-lens

select for evaluation. With the set T of t top-ranked non-links,
we can use measures such as accuracy, recall, or precision to
judge a method’s performance, where accuracy is the fraction
of correctly classified non-links, recall is the fraction of posi-

tive links we have selected, T∩S+
val

S+
val

, and precision is the fraction

of positive links in our selection, T∩S+
val

T . However, choosing a
different value for t affects a model’s performance outcome by
changing T. An alternative is to consider the performance across
all possible thresholds, for example using the precision-recall
(PR) or receiver-operating-characteristic (ROC) curve. The PR
curve summarises a model’s precision and recall performance
for all thresholds while the ROC curve summarises the trade-off
between true positives and false positives amongst the predicted
links for each t. A model is considered better than another one
if its area under the PR curve, AUPR, as well as its area under
the ROC curve, AUC, is higher [90]60.

60 While AUC is increas-
ingly criticised as a
measure of model per-
formance, AUPR is be-
coming more popular.
Nevertheless, a recom-
mendation is to report
both [90]. We evaluate map equation similarity on 47 real-world net-

works, 35 directed and 12 undirected. We use 5-fold cross-
validation and negative sampling, and report the AUPR and
AUC performance across the 47 networks (Figure 47)61. As base-61 Paper IV contains the

full results on a per-
network basis [4].

lines, we use the four random walk-based embedding methods
DeepWalk [63], node2vec [34], LINE with first, second, and com-
bined first-and-second order neighbourhoods [77], and NERD
[38], using the implementations provided by the respective au-
thors. Each of the baseline methods have a set of hyperparame-
ters, such as the number of embedding dimensions or the num-
ber of random walks to be sampled, that we could optimise to
tune each method for each specific network. However, we re-
frain from doing so because using different sets of hyperparam-
eters essentially changes the method, but we want to compare
how the same method performs across a large set of networks
[38]. Moreover, in practical settings, constraints regarding time
or other resources may make it infeasible to tune the parameters
for each data set. Instead, we use defaults for all parameters as
suggested by the respective authors [4]. Map equation similarity,
on the other hand, is parameter-free, and Infomap determines
the complexity of the embedding purely from the data using the
map equation.

community-based link prediction 79

We find that, on average, map equation similarity performs
best, both in terms of AUPR and AUC. Typically, one or more of
the baseline methods outperform map equation similarity, how-
ever, across the set of 47 networks, they often perform worse
than map equation similarity [4].

(a)

Map
Sim

Dee
pW

alk
no

de
2v

ec

LIN
E 1

LIN
E 2

LIN
E 1+2

NER
D

0.5

0.6

0.7

0.8

0.9

1.0

AU
PR

(b)

Map
Sim

Dee
pW

alk
no

de
2v

ec

LIN
E 1

LIN
E 2

LIN
E 1+2

NER
D

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Figure 47: The area
under (a) the precision-
recall curve, AUPR, and
under (b) the receiver-
operating-characteristic
curve, AUC, for map
equation similarity,
DeepWalk, node2Vec,
LINE, and NERD on 47

real-world networks.
Each dot represents the
performance on one
network.

Future Directions

We interpreted the coding structure for a network partition as
an implicit network embedding that allows us to calculate sim-
ilarities between nodes. A next step would be to make the em-
bedding explicit, potentially in terms of a mapping to points in
hyperbolic space. This could also help to address the drawback
of map equation similarity that it must assign the same similar-
ity to different node pairs (u, w) and (v, w) if u and v are in the
same module because, when coding with the map equation, we

80 through the coding-lens

only remember the current module, but not the most recently
visited node.

Map equation similarity could also be used to generate rec-
ommendations, which is similar to link prediction, but there is
a difference. In link prediction, the goal is to predict what links
are most likely to form across the whole network, whereas in the
recommendation setting, the task is to predict the most likely
links on a per-node basis.

Part III

Conclusion

Summary

Science is knowledge which we
understand so well that we can
teach it to a computer; and if we
don’t fully understand something,
it is an art to deal with it.

Donald Knuth

The world is full of networks, many of which are too large
and complex for us to grasp as a whole. To understand those
networks, we need to simplify them so that we can focus on
analysing their components, one at a time, and how those com-
ponents interact. The map equation framework provides a tool
that does exactly this: it finds a network’s modules, allowing us
to represent it as a system of systems. Designed for community
detection in unipartite networks with complete data, the map
equation can in principle be applied when its assumptions are
not satisfied, but then we must be prepared for a trade-off. For
example, the map equation neither (i) takes the different node
types in bipartite networks nor (ii) potentially missing data in
real-world networks into account. Therefore, when analysing
such data, we can miss important patterns or end up with spu-
rious communities. Moreover, in practical applications, we often
wish to do more than find communities, for example, (iii) decide
how influential nodes are, or (iv) predict what links are likely to
form in the future. However, both these tasks are outside the
map equation’s original scope of community detection.

Looking through the coding-lens, we developed and explained
solutions for all four problems, using different approaches for
each of them.

84 through the coding-lens

Mapping Flows on Bipartite Networks

We took advantage of the link patterns in bipartite networks and
equipped the map equation with an adapted coding scheme to
reflect the existence of two node types. Our key insight was that
random walks must alternate between left and right nodes, al-
lowing us to narrow down which nodes the random walker can
visit in the next step by remembering its current node’s type. We
used coding schemes with two separate codebooks in each mod-
ule: one for left-to-right, and one for right-to-left transitions. By
controlling the rate at which we use node-type information, we
found communities at different scales, scanning the community
landscape in bipartite networks from coarse to fine.

Many real-world networks are bipartite, for example user-
song networks where users are connected to songs they like,
user-event attendance networks, or director-company networks
where persons are connected to companies if they are a mem-
ber of its board of directors. The bipartite map equation helps
us understand those networks better by paying more or less at-
tention to node types and revealing the networks’ structure at
different scales.

Mapping Flows on Networks with Incomplete Data
-1

-1 -1

-1

To avoid detecting spurious communities in networks where
data is missing, we used an empirical Bayes estimate of the
random walker’s transition rate between nodes, assuming that
a node’s strength tells us to what extent we can trust its inci-
dent links’ weights. Our transition rate estimate corresponds to
node-dependent teleportation where both the random walker’s
teleportation rate and target depend on the current node. Effec-
tively, we introduced a pre-processing step to address the miss-
ing data problem without changing the map equation itself, and
were able to detect robust communities even when moderate to
large amounts of data were missing.

In reality, when we collect data about a networked system by
observing how its parts connect to each other, it can be difficult
to obtain a complete picture of the network: some connections
might be difficult to observe, perhaps because they happen so

summary 85

rarely and we only have a limited amount of resources available
to spend on collecting data. This could be the case in social net-
works where some friends only interact every few months and
we only have a few weeks of time to collect the data. However,
we still want to analyse such a network’s structure, and mod-
elling missing data helps us do this with the map equation.

Map Equation Centrality

We derived a community-aware centrality score from the map
equation by invoking the VGC principle. Map equation central-
ity relates a node’s importance to the combined marginal harm
that its existence causes to the remaining nodes, that is, by how
many bits the codelength could be reduced if that node did not
exist. Since a node’s codeword only exists in the context of its
own module, nodes outside of that module are unaffected by the
node’s existence. Therefore, using the map equation framework,
we can determine node importance from a node’s modular con-
text alone, using only the node’s visit rate and its module’s code-
book usage rate. Map equation centrality is flow-model agnos-
tic, allowing us to choose the the model that best characterises
the process at hand for computing node centrality scores.

Typically, we find community structure in social networks,
that is, we can identify social groups and say something about
who belongs to which of those groups. The influence that each
person has depends on how well they are connected to others,
but also on how influential their group is. As an example, con-
sider membership in political parties: politicians have more in-
fluence if they have more connections, but this is not the whole
story. As a member of a more influential party, they have more
influence than a politician who is a member in a less influential
party, even if they otherwise have the same connections. Map
equation centrality takes such group memberships into account
and gives us a better idea about how influential each node is in
a network with communities.

86 through the coding-lens

Link Prediction with Map Equation Similarity

To predict links with the map equation framework, we inter-
preted a network’s community structure as an implicit node
embedding and used its corresponding coding scheme to cal-
culate similarities between pairs of nodes. We used the fact that,
while a random walker is constrained by the link patterns in
a network, coding schemes are more flexible and can describe
transitions between any two nodes. We defined map equation
similarity as the rate at which the random walker transitions
from one node to another, and regard a node as more similar
to another the higher that rate is. Map equation similarity is an
asymmetric measure because random walker transitions rates
between two nodes are, in general, asymmetric. Equivalently,
we can describe the similarity between nodes as the number of
bits required to encode a random-walker step between them;
then, the more similar two nodes are, the fewer bits are needed
to describe the random walker’s transition, and the more likely
we consider the corresponding non-link to form.

We often only get a snapshot of a network when we observe
them in reality, even if the data is complete. For example, the
data we can extract from online social networks is complete be-
cause it accurately captures the network’s current state. But it
may change over time: persons who are not yet connected may
befriend each other. With map equation similarity, we can use a
network’s current community structure to predict who will be-
come connected to whom, and make friend suggestions accord-
ingly. Similarly, for customer-product networks, we can predict
who will buy what product in the future, and recommend those
products.

Conclusion

We looked at the map equation through the lens of coding and
applied it to questions that were outside its original scope. We
addressed each challenge with a different strategy, that is (i) we
adapted the map equation’s coding scheme to the specific link
patterns in bipartite networks, (ii) we computed regularised esti-
mates for the random walker’s transition rates between nodes to

summary 87

compensate for incomplete data, (iii) we derived a community-
aware centrality score by considering how a node’s existence
affects other nodes’ codewords, and (iv) we interpreted coding
schemes as implicit node embeddings and used them to calcu-
late similarities between pairs of nodes to make link predictions.
In all cases, we demonstrated the map equation’s flexibility and
how it can be adapted, extended, or used in a novel way, and
hope to provide inspiration to others who may wish to follow
similar approaches to answer their own research questions.

Author Contributions

A short description of the authors’ contributions to each paper

I Mapping Flows on Bipartite Networks
Christopher Blöcker and Martin Rosvall
Martin an I came up with the study idea. I was the main responsible for the project,
implemented the bipartite map equation in Infomap, and ran the experiments.
Martin and I interpreted the results together. I was the main responsible for writing
the paper and Martin supported me.

II Mapping Flows on Weighted and Directed Networks with Incomplete Observations
Jelena Smiljanić, Christopher Blöcker, Daniel Edler, Martin Rosvall
Jelena and Martin came up with the study idea, and Jelena was the main respon-
sible for the project and developed most of the theory. All four of us actively
participated in discussions to bring the project forward. Jelena, Daniel, and I im-
plemented different parts of the solution, and Jelena ran the experiments. Jelena
and I mainly interpreted the results and wrote the paper with support from Daniel
and Martin.

III Map Equation Centrality: Community-aware Centrality Based on the Map Equation
Christopher Blöcker, Juan Carlos Nieves, Martin Rosvall
Juan Carlos, Martin, and I came up with the study idea. I was the main responsi-
ble for the project, implemented map equation centrality, and ran the experiments.
Juan Carlos, Martin, and I interpreted the results together. I was the main respon-
sible for writing the paper and Juan Carlos and Martin supported me.

IV Similarity-based Link Prediction from Modular Compression of Network Flows
Christopher Blöcker, Jelena Smiljanić, Ingo Scholtes, Martin Rosvall
I came up with the initial study idea and developed it first with Martin, and later
also with Jelena and Ingo. I was the main responsible for the project, implemented
map equation similarity, and ran the experiments. Ingo and I mainly interpreted
the results and wrote the paper and were supported by Jelena and Martin.

Acknowledgements

Many persons have helped me during my PhD studies, directly
and indirectly, and I am grateful for their support. I am almost
certain that I will forget to mention someone who deserves men-
tioning, and I am sorry about that, but I will do my best.

First and foremost, Nina, my love, you put up with me around
the clock, when science worked as it should and I was happy, but
also when it did not and I was upset. Sometimes I knew better
than to follow your advice, but in the end it always turned out
that I should have listened.

Martin, you introduced me to the world of network science,
pushed me to do great research, showed me how to tell exciting
stories in my papers, and helped me develop as a researcher and
teacher — thank you!

Juan Carlos and Ingo, thank you for interesting discussions
and the fun projects we did together, I hope there will be more.

Thomas, thank you for all your support, helping me get more
teaching experience, and the papers we wrote together.

IceLab, old and new: small Ludvig, Markus, Peter, Jonas,
Daniel, Alexis, Magnus, Joaquín, Lucas, Dolores, big Ludvig,
Hugo, Moa, and all the rest. Special thanks to Jelena for ex-
cellent work together and feedback on an earlier version of this
thesis. And Anton, thank you for great company throughout the
years and especially on our trips to Salina and Tokyo.

My WASP buddies in Umeå: Tim and Tobias; and my batch,
WASP AS2: Christian, Matthias, Martin L., Caroline, Hector,
Georgia, Veronika, Martin I., Joakim, thank you for fun times
together, in courses and on study trips. The WASP PhD student
council: Matthias, Tim, Anoud, Alexandre, Georgia, Veronika,
Joakim, Kristin, Shuangshuang, Anton, Lena, and Amandine,

92 through the coding-lens

thank you for great work together.
My dance family in Umeå, which provides a sometimes much

needed counterbalance to life as a scientist: Elin, Sara, Anton,
Jennie, Daniel, Frida, Sofia, Johanna J., Sandra, Simon, Philip,
Alice, Ida, Kristoffer, Johannes, Magnus, Madeleine, Jens, Jo-
hanna N., Thomas, Fredrik, Lina, thank you for lots of fun on
and off the dance floor. And beyond Umeå: Outi, Tero, Lauri,
Therése, Joachim, Katja, Viktoria, Robin, Ibi, Chuck, Hanna O.,
Hanna T., Mari, Heli, Susanne, Leif, and countless others.

My friends back home whom I’ve known since school and
university days: Julius, Gerrit, Jan-Philip, and Corvin, thank you
for still catching up and being interested in what’s going on.

Den Norgrenska klanen: Nina, Lena, Sven, Ewa, Thomas,
Sofia, Ida, Stefan, Örjan och Carina, tack för att ni får mig att
känna mig hemma i Sverige.

Und zu guter Letzt meine Familie: Mama, Julia, und Sabrina,
es ist nicht immer einfach, in der Welt verstreut zu sein. Aber
Mama, du bleibst trotzdem cool. Es ist schön, dass wir in einer
Umgebung aufwachsen durften, in der Bildung wichtig war, an-
sonsten hätte ich (oder hätten wir?) womöglich nie studiert, ge-
schweige denn, dass ich an eine Promotion gedacht hätte. Und
Sabrina, danke für dein Interesse an meinen Papern, dein Feed-
back und dass du ein Pol der Logik bist.

Bibliography

[1] Christopher Blöcker and Martin Rosvall. “Mapping flows
on bipartite networks”. In: Physical Review E 102 (5 Nov.
2020), p. 052305. doi: 10.1103/PhysRevE.102.052305.

[2] Jelena Smiljanić et al. “Mapping flows on weighted and
directed networks with incomplete observations”. In: Jour-
nal of Complex Networks 9.6 (Dec. 2021). doi: 10.1093/
comnet/cnab044.

[3] Christopher Blöcker, Juan Carlos Nieves, and Martin Ros-
vall. “Map equation centrality: community-aware central-
ity based on the map equation”. In: Applied Network Sci-
ence 7.1 (Aug. 2022), p. 56. doi: 10.1007/s41109- 022-
00477-9.

[4] Christopher Blöcker et al. Similarity-based Link Prediction
from Modular Compression of Network Flows. 2022. doi: 10.
48550/ARXIV.2208.14220.

[5] Eric Allender. “A status report on the P versus NP ques-
tion”. In: Advances in Computers 77 (2009), pp. 117–147.
doi: https://doi.org/10.1016/S0065-2458(09)01204-
2.

[6] Rounak Banik. The Complete Pokemon Dataset. Accessed
2022-03-09. 2018. url: https://www.kaggle.com/datasets/
rounakbanik/pokemon.

[7] Aleix Bassolas et al. Metadata-informed community detection
with lazy encoding using absorbing random walks. 2021. doi:
10.48550/ARXIV.2111.05158.

94 through the coding-lens

[8] Jon Louis Bentley. “Multidimensional Binary Search Trees
Used for Associative Searching”. In: Communications of the
ACM 18.9 (Sept. 1975), pp. 509–517. doi: 10.1145/361002.
361007.

[9] Vincent D Blondel et al. “Fast unfolding of communities
in large networks”. In: Journal of Statistical Mechanics: The-
ory and Experiment 2008.10 (Oct. 2008), P10008. doi: 10.
1088/1742-5468/2008/10/p10008.

[10] Ludvig Bohlin. “Toward higher-order network models”.
PhD thesis. Umeå University, 2018. isbn: 978-91-7601-892-
7.

[11] Alexandra Brintrup and Anna Ledwoch. “Supply network
science: Emergence of a new perspective on a classical
field”. In: Chaos: An Interdisciplinary Journal of Nonlinear
Science 28.3 (2018), p. 033120. doi: 10.1063/1.5010766.

[12] Fabio Caccioli, Paolo Barucca, and Teruyoshi Kobayashi.
“Network models of financial systemic risk: a review”. In:
Journal of Computational Social Science 1.1 (2018), pp. 81–
114. doi: 10.1007/s42001-017-0008-3.

[13] Kousik Das, Sovan Samanta, and Madhumangal Pal. “Stu-
dy on centrality measures in social networks: a survey”.
In: Social network analysis and mining 8.1 (2018), pp. 1–11.
doi: 10.1007/s13278-018-0493-2.

[14] Manlio De Domenico et al. “Identifying Modular Flows
on Multilayer Networks Reveals Highly Overlapping Or-
ganization in Interconnected Systems”. In: Physical Review
X 5 (1 Mar. 2015), p. 011027. doi: 10.1103/PhysRevX.5.
011027.

[15] Sybil Derrible and Christopher Kennedy. “Applications
of Graph Theory and Network Science to Transit Net-
work Design”. In: Transport Reviews 31.4 (2011), pp. 495–
519. doi: 10.1080/01441647.2010.543709.

[16] Salva Duran-Nebreda and George W. Bassel. “Bridging
Scales in Plant Biology Using Network Science”. In: Trends
in Plant Science 22.12 (2017), pp. 1001–1003. doi: 10.1016/
j.tplants.2017.09.017.

BIBLIOGRAPHY 95

[17] David Easley and Jon Kleinberg. Networks, crowds, and mar-
kets: Reasoning about a highly connected world. Cambridge
university press, 2010. isbn: 978-0-521-19533-1.

[18] Achim Edelmann et al. “Computational social science and
sociology”. In: Annual Review of Sociology 46 (2020), pp. 61–
81. doi: 10.1146/annurev-soc-121919-054621.

[19] D. Edler, A. Eriksson, and M. Rosvall. The Infomap Software
Package. Accessed 2022-04-01. 2020. url: https://www.
mapequation.org.

[20] Daniel Edler, Ludvig Bohlin, and Martin Rosvall. “Map-
ping Higher-Order Network Flows in Memory and Multi-
layer Networks with Infomap”. In: Algorithms 10.4 (2017).
doi: 10.3390/a10040112.

[21] Jack Edmonds and Ellis L. Johnson. “Matching, Euler tours
and the Chinese postman”. In: Mathematical Programming
5.1 (Dec. 1973), pp. 88–124. doi: 10.1007/BF01580113.

[22] Paul Erdős and Alfréd Rényi. “On the evolution of ran-
dom graphs”. In: Publications of the Mathematical Institute
of the Hungarian Academy of Sciences 5.1 (1960), pp. 17–60.

[23] Carlos Roberto Fonseca and Gislene Ganade. “Asymme-
tries, Compartments and Null Interactions in an Amazo-
nian Ant-Plant Community”. In: Journal of Animal Ecology
65.3 (May 1996), pp. 339–347. doi: 10.2307/5880.

[24] Marie-Josée Fortin, Mark RT Dale, and Chris Brimacombe.
“Network ecology in dynamic landscapes”. In: Proceedings
of the Royal Society B 288.1949 (2021), p. 20201889. doi:
10.1098/rspb.2020.1889.

[25] Santo Fortunato. “Community detection in graphs”. In:
Physics Reports 486.3 (2010), pp. 75–174. doi: 10.1016/j.
physrep.2009.11.002.

[26] Santo Fortunato et al. “Science of science”. In: Science 359.6379

(2018), eaao0185. doi: 10.1126/science.aao0185.

[27] M.L. Fredman and R.E. Tarjan. “Fibonacci Heaps And
Their Uses In Improved Network Optimization Algorithms”.
In: 25th Annual Symposium on Foundations of Computer Sci-
ence. 1984, pp. 338–346. doi: 10.1109/SFCS.1984.715934.

96 through the coding-lens

[28] Michael R Garey and David S Johnson. Computers and In-
tractability. Vol. 174. W.H. Freeman and Company, 1979.
isbn: 978-0-7167-1045-5.

[29] Zakariya Ghalmane, Mohammed El Hassouni, and Hocine
Cherifi. “Immunization of networks with non-overlapping
community structure”. In: Social Network Analysis and Min-
ing 9.1 (2019), pp. 1–22. doi: 10.1007/s13278-019-0591-
9.

[30] Amir Ghasemian, Homa Hosseinmardi, and Aaron Clau-
set. “Evaluating Overfit and Underfit in Models of Net-
work Community Structure”. In: IEEE Transactions on Know-
ledge and Data Engineering 32.9 (2020), pp. 1722–1735. doi:
10.1109/TKDE.2019.2911585.

[31] David F. Gleich. “PageRank Beyond the Web”. In: SIAM
Review 57.3 (2015), pp. 321–363. doi: 10.1137/140976649.

[32] Marko Gosak et al. “Network science of biological sys-
tems at different scales: A review”. In: Physics of Life Re-
views 24 (2018), pp. 118–135. doi: 10.1016/j.plrev.2017.
11.003.

[33] Palash Goyal and Emilio Ferrara. “Graph embedding tech-
niques, applications, and performance: A survey”. In: Kn-
owledge-Based Systems 151 (2018), pp. 78–94. doi: 10.1016/
j.knosys.2018.03.022.

[34] Aditya Grover and Jure Leskovec. “node2vec: Scalable fea-
ture learning for networks”. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discov-
ery and data mining. ACM. 2016, pp. 855–864. doi: 10 .

1145/2939672.2939754.

[35] David A Huffman. “A method for the construction of
minimum-redundancy codes”. In: Proceedings of the IRE
40.9 (1952), pp. 1098–1101. doi: 10.1109/JRPROC.1952.
273898.

[36] David M.P. Jacoby and Robin Freeman. “Emerging Net-
work-Based Tools in Movement Ecology”. In: Trends in
Ecology & Evolution 31.4 (2016), pp. 301–314. doi: 10.1016/
j.tree.2016.01.011.

BIBLIOGRAPHY 97

[37] Brian Karrer and M. E. J. Newman. “Stochastic blockmod-
els and community structure in networks”. In: Physical Re-
view E 83 (1 Jan. 2011), p. 016107. doi: 10.1103/PhysRevE.
83.016107.

[38] Megha Khosla et al. “Node Representation Learning for
Directed Graphs”. In: Machine Learning and Knowledge Dis-
covery in Databases. Cham: Springer, 2020, pp. 395–411.
doi: 10.1007/978-3-030-46150-8_24.

[39] Maksim Kitsak et al. “Identification of influential spread-
ers in complex networks”. In: Nature physics 6.11 (2010),
pp. 888–893. doi: 10.1038/nphys1746.

[40] Dirk Koschützki et al. “Centrality Indices”. In: Network
Analysis: Methodological Foundations. Ed. by Ulrik Brandes
and Thomas Erlebach. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 16–61. doi: 10.1007/978-3-540-
31955-9_3.

[41] Jérôme Kunegis. “KONECT: The Koblenz Network Col-
lection”. In: Proceedings of the 22nd International Conference
on World Wide Web. WWW ’13 Companion. Rio de Janeiro,
Brazil: Association for Computing Machinery, 2013, pp. 1343–
1350. doi: 10.1145/2487788.2488173.

[42] R. Lambiotte and M. Rosvall. “Ranking and clustering of
nodes in networks with smart teleportation”. In: Physi-
cal Review E 85 (5 May 2012), p. 056107. doi: 10.1103/
PhysRevE.85.056107.

[43] Herman B Leonard. “Elicitation of honest preferences for
the assignment of individuals to positions”. In: Journal of
Political Economy 91.3 (1983), pp. 461–479. doi: 10.1086/
261158.

[44] Jingyi Lin and Yifang Ban. “Complex Network Topology
of Transportation Systems”. In: Transport Reviews 33.6 (2013),
pp. 658–685. doi: 10.1080/01441647.2013.848955.

[45] Chuang Liu et al. “Computational network biology: Data,
models, and applications”. In: Physics Reports 846 (2020).
Computational network biology: Data, models, and appli-
cations, pp. 1–66. doi: 10.1016/j.physrep.2019.12.004.

98 through the coding-lens

[46] David JC MacKay, David JC Mac Kay, et al. Information
theory, inference and learning algorithms. Cambridge univer-
sity press, 2003. isbn: 978-0-521-64298-9.

[47] Sofus A Macskassy and Foster Provost. “Classification in
networked data: A toolkit and a univariate case study.” In:
Journal of Machine Learning Research 8.5 (2007). url: https:
//jmlr.csail.mit.edu/papers/v8/macskassy07a.html.

[48] Thomas Magelinski, Mihovil Bartulovic, and Kathleen M.
Carley. “Measuring Node Contribution to Community
Structure With Modularity Vitality”. In: IEEE Transactions
on Network Science and Engineering 8.1 (2021), pp. 707–723.
doi: 10.1109/TNSE.2020.3049068.

[49] Benjamin F. Maier and Dirk Brockmann. “Cover time for
random walks on arbitrary complex networks”. In: Phys-
ical Review E 96 (4 Oct. 2017), p. 042307. doi: 10.1103/
PhysRevE.96.042307.

[50] Naoki Masuda, Mason A. Porter, and Renaud Lambiotte.
“Random walks and diffusion on networks”. In: Physics
Reports 716-717 (2017). Random walks and diffusion on
networks, pp. 1–58. doi: 10.1016/j.physrep.2017.07.
007.

[51] Miller McPherson, Lynn Smith-Lovin, and James M Cook.
“Birds of a feather: Homophily in social networks”. In:
Annual Review of Sociology 27.1 (2001), pp. 415–444. doi:
10.1146/annurev.soc.27.1.415.

[52] Merian-Erben, Public domain, via Wikimedia Commons.
Königsberg 1651. Accessed 2022-03-09. 2016. url: https://
commons.wikimedia.org/wiki/File:Image-Koenigsberg,
_Map_by_Merian-Erben_1652.jpg.

[53] M. E. J. Newman. “The Structure and Function of Com-
plex Networks”. In: SIAM Review 45.2 (2003), pp. 167–256.
doi: 10.1137/S003614450342480.

[54] M. E. J. Newman and M. Girvan. “Finding and evaluating
community structure in networks”. In: Physical Review E
69 (2 Feb. 2004), p. 026113. doi: 10.1103/PhysRevE.69.
026113.

BIBLIOGRAPHY 99

[55] M.E.J. Newman and M. Girvan. “Mixing Patterns and Com-
munity Structure in Networks”. In: Statistical Mechanics
of Complex Networks. Ed. by Romualdo Pastor-Satorras,
Miguel Rubi, and Albert Diaz-Guilera. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 66–87. doi: 10.1007/
978-3-540-44943-0_5.

[56] Mark Newman. Networks. Oxford University Press, 2018.
isbn: 978-0-19-883997-2.

[57] Luis E. Olmos et al. “A data science framework for plan-
ning the growth of bicycle infrastructures”. In: Transporta-
tion Research Part C: Emerging Technologies 115 (2020), p. 102640.
doi: 10.1016/j.trc.2020.102640.

[58] Tore Opsahl. Why anchorage is not (that) important: Binary
ties and sample selection. Accessed 2022-05-16. 2011. url:
https://toreopsahl.com/2011/08/12/why-anchorage-

is- not- that- important- binary- ties- and- sample-

selection/.

[59] Gergely Palla et al. “Directed network modules”. In: New
Journal of Physics 9.6 (June 2007), pp. 186–186. doi: 10.
1088/1367-2630/9/6/186.

[60] John Palowitch, Shankar Bhamidi, and Andrew B. No-
bel. “Significance-based community detection in weighted
networks”. In: Journal of Machine Learning Research 18.188

(2018), pp. 1–48. url: http://jmlr.org/papers/v18/17-
377.html.

[61] Tiago P. Peixoto. “Bayesian Stochastic Blockmodeling”. In:
Advances in Network Clustering and Blockmodeling. John Wi-
ley & Sons, Ltd, 2019. Chap. 11, pp. 289–332. doi: 10.
1002/9781119483298.ch11.

[62] Supun Perera, Michael G.H. Bell, and Michiel C.J. Bliemer.
“Network science approach to modelling the topology and
robustness of supply chain networks: a review and per-
spective”. In: Applied Network Science 2.1 (Oct. 2017), p. 33.
issn: 2364-8228. doi: 10.1007/s41109-017-0053-0.

100 through the coding-lens

[63] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deep-
Walk: Online Learning of Social Representations”. In: Pro-
ceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’14. New
York, New York, USA: Association for Computing Ma-
chinery, 2014, pp. 701–710. doi: 10.1145/2623330.2623732.

[64] Stephany Rajeh et al. “Analyzing Community-Aware Cen-
trality Measures Using the Linear Threshold Model”. In:
Complex Networks & Their Applications X. Ed. by Rosa Maria
Benito et al. Cham: Springer International Publishing, 2022,
pp. 342–353. doi: 10.1007/978-3-030-93409-5_29.

[65] Stephany Rajeh et al. “Comparing Community-Aware Cen-
trality Measures in Online Social Networks”. In: Compu-
tational Data and Social Networks. Ed. by David Mohaisen
and Ruoming Jin. Cham: Springer International Publish-
ing, 2021, pp. 279–290. doi: 10.1007/978-3-030-91434-
9_25.

[66] Martin Rosvall and Carl T. Bergstrom. “Maps of random
walks on complex networks reveal community structure”.
In: Proc. of the National Academy of Sciences 105.4 (2008),
pp. 1118–1123. doi: 10.1073/pnas.0706851105.

[67] Martin Rosvall and Carl T. Bergstrom. “Multilevel Com-
pression of Random Walks on Networks Reveals Hier-
archical Organization in Large Integrated Systems”. In:
PLOS ONE 6.4 (Apr. 2011), pp. 1–10. doi: 10.1371/journal.
pone.0018209.

[68] Martin Rosvall et al. “Memory in network flows and its ef-
fects on spreading dynamics and community detection”.
In: Nature Communications 5.1 (Aug. 2014), p. 4630. doi:
10.1038/ncomms5630.

[69] A. I. Saltykov. “The number of components in a random
bipartite graph”. In: 5.6 (1995), pp. 515–524. doi: 10.1515/
dma.1995.5.6.515.

[70] Ingo Scholtes. “When is a Network a Network? Multi-
Order Graphical Model Selection in Pathways and Tem-
poral Networks”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data

BIBLIOGRAPHY 101

Mining. KDD ’17. Halifax, NS, Canada: Association for
Computing Machinery, 2017, pp. 1037–1046. doi: 10.1145/
3097983.3098145.

[71] D. Sculley and C.E. Brodley. “Compression and machine
learning: a new perspective on feature space vectors”. In:
Data Compression Conference (DCC’06). 2006, pp. 332–341.
doi: 10.1109/DCC.2006.13.

[72] Claude Elwood Shannon. “A mathematical theory of com-
munication”. In: The Bell System Technical Journal 27.3 (1948),
pp. 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[73] Michael Sipser. Introduction to the Theory of Computation.
Vol. 27. 1. ACM New York, NY, USA, 1996, pp. 27–29.
isbn: 978-0-6192-1764-8.

[74] Jelena Smiljanić and Marija Mitrović Dankulov. “Associa-
tive nature of event participation dynamics: A network
theory approach”. In: PLOS ONE 12.2 (Feb. 2017), pp. 1–
16. doi: 10.1371/journal.pone.0171565.

[75] Martin Summer. “Financial Contagion and Network Anal-
ysis”. In: Annual Review of Financial Economics 5.1 (2013),
pp. 277–297. doi: 10.1146/annurev-financial-110112-
120948.

[76] Shazia Tabassum et al. “Social network analysis: An overview”.
In: WIREs Data Mining and Knowledge Discovery 8.5 (2018),
e1256. doi: https://doi.org/10.1002/widm.1256.

[77] Jian Tang et al. “LINE: Large-Scale Information Network
Embedding”. In: Proceedings of the 24th International Con-
ference on World Wide Web. WWW ’15. Florence, Italy, 2015,
pp. 1067–1077. doi: 10.1145/2736277.2741093.

[78] Leo Torres et al. “The Why, How, and When of Repre-
sentations for Complex Systems”. In: SIAM Review 63.3
(2021), pp. 435–485. doi: 10.1137/20M1355896.

[79] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain
to Leiden: guaranteeing well-connected communities”. In:
Scientific Reports 9.1 (Mar. 2019), p. 5233. doi: 10.1038/
s41598-019-41695-z.

102 through the coding-lens

[80] Jason M. Tylianakis and Rebecca J. Morris. “Ecological
Networks Across Environmental Gradients”. In: Annual
Review of Ecology, Evolution, and Systematics 48.1 (2017),
pp. 25–48. doi: 10 . 1146 / annurev - ecolsys - 110316 -

022821.

[81] Alcides Viamontes Esquivel. “Narrowing the gap between
network models and real complex systems”. PhD thesis.
Umeå University, 2014. isbn: 978-91-7601-085-3.

[82] Alcides Viamontes Esquivel and Martin Rosvall. “Com-
pression of Flow Can Reveal Overlapping-Module Orga-
nization in Networks”. In: Physical Review X 1 (2 Dec.
2011), p. 021025. doi: 10.1103/PhysRevX.1.021025.

[83] William Vickrey. “Counterspeculation, auctions, and com-
petitive sealed tenders”. In: The Journ. of finance 16.1 (1961),
pp. 8–37. doi: 10.1111/j.1540-6261.1961.tb02789.x.

[84] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “In-
formation Theoretic Measures for Clusterings Compari-
son: Is a Correction for Chance Necessary?” In: Proceed-
ings of the 26th Annual International Conference on Machine
Learning. ICML ’09. Montreal, Quebec, Canada: Associa-
tion for Computing Machinery, 2009, pp. 1073–1080. doi:
10.1145/1553374.1553511.

[85] Wei Wang et al. “Predicting the epidemic threshold of
the susceptible-infected-recovered model”. In: Scientific re-
ports 6.1 (2016), pp. 1–12. doi: 10.1038/srep24676.

[86] Xuanhui Wang et al. “DirichletRank: Solving the Zero-
One Gap Problem of PageRank”. In: ACM Transactions
on Information Systems 26.2 (Apr. 2008). doi: 10 . 1145 /

1344411.1344416.

[87] Duncan J. Watts and Steven H. Strogatz. “Collective dy-
namics of ‘small-world’ networks”. In: Nature 393.6684

(June 1998), pp. 440–442. doi: 10.1038/30918.

[88] Wikipedia. English alphabet. Accessed 2022-03-23. 2022. url:
https://en.wikipedia.org/wiki/English_alphabet.

BIBLIOGRAPHY 103

[89] Zhiying Zhao et al. “A community-based approach to iden-
tifying influential spreaders”. In: Entropy 17.4 (2015), pp. 2228–
2252. doi: 10.3390/e17042228.

[90] Tao Zhou. “Progresses and challenges in link prediction”.
In: iScience 24.11 (2021), p. 103217. doi: 10.1016/j.isci.
2021.103217.

