Map Equation Centrality: A Map Equation-based Community-Aware Centrality Score

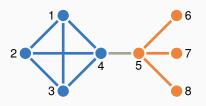
NetSciX 2022

arXiv:2201.12590

Christopher Blöcker¹, Juan Carlos Nieves², Martin Rosvall¹ christopher.blocker@umu.se

¹Integrated Science Lab Department of Physics Umeå University

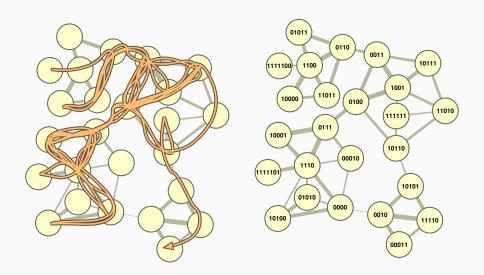
²Department of Computing Science Umeå University



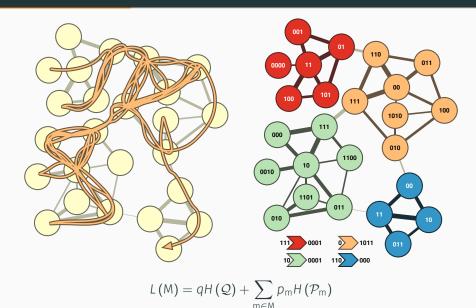
Motivation

Question

How influential are the nodes? Does 4 or 5 have more influence?


Idea

Use communities to determine influence.


The Map Equation Framework

Background:

The Map Equation Framework

The Map Equation Framework

Network Vitality

Network Vitality

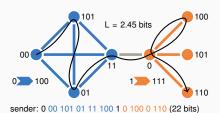
Network Vitality

Given a graph G and a function f that operates on graphs, the vitality μ with respect to some node u is defined as (Koschützki 2005)

$$\mu(G, u) = f(G) - f(G - \{u\}),$$

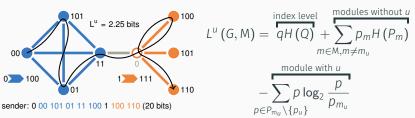
where $G - \{u\}$ denotes the graph G with node u removed.

This was used to define modularity vitality (Magelinski 2021)

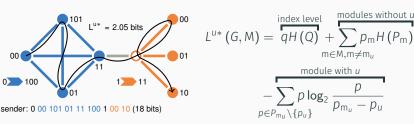

We take a slightly different approach with the map equation

- to keep the visit rates and modules unchanged, we do not remove nodes
- instead we "silence" them, that is we ignore them when describing the random walk
 - \rightarrow the per-step description length changes
- · Idea: silencing a more important nodes has a larger effect

Silencing Nodes


Silencing Nodes

This is the starting point, nothing happened yet.



Silencing Nodes

(a) use the same code but don't encode visits to the silenced node

(b) design a new code without a codeword for the silenced node

Define:
$$\lambda(G, M, u) = L^{u}(G, M) - L^{u*}(G, M) = -(p_{m_{u}} - p_{u}) \log_{2} \frac{p_{m_{u}} - p_{u}}{p_{m_{u}}}$$

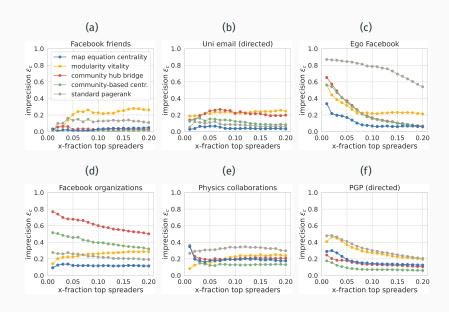
Map Equation Centrality

Map Equation Centrality

$$\lambda\left(\mathsf{G},\mathsf{M},u\right)=-\left(p_{\mathsf{m}_{u}}-p_{u}\right)\log_{2}rac{p_{\mathsf{m}_{u}}-p_{u}}{p_{\mathsf{m}_{u}}}$$

Interpretation: map equation centrality captures the "harm" that a node causes to others by its existence. Without it, the other nodes could have shorter codewords.

This only affects nodes within the same module!


Advantage: map equation centrality is true to the map equation.

Evaluation

Evaluation

- Determine influence of nodes in real-world networks
- We follow the approach of (Rajeh 2021)
 - Node u's influence ← SIR spreading power expected number of nodes that get infected when u is the single starting point of an SIR disease
 - Select the top spreaders according to centrality measure c and SIR
 - Measure performance using imprecision $\epsilon_{c}(x) = 1 \frac{M_{c}(x)}{M_{SIR}(x)}$
 - x: fraction of spreaders to identify
 - M_c : average spreading power for top x-fraction according to c
 - \cdot M_{SIR} : average spreading power for top x-fraction according to SIR
- Compare with 3 community-aware baselines and standard PageRank

Evaluation

Conclusion

Conclusion

Problem

We consider node centrality from a community-based perspective.

Our Contribution

We propose map equation centrality, an information-theoretic centrality measure based on the map equation.

Results

Map equation centrality performs well in determining influential nodes in real-world networks.

Acknowledgements

Thank you for your attention!